Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 41(12): 3095-3115, 2022 12.
Article in English | MEDLINE | ID: mdl-36349534

ABSTRACT

Use of three topical antiseptic compounds-benzalkonium chloride (BAC), benzethonium chloride (BZT), and chloroxylenol (PCMX)-has recently increased because of the phaseout of other antimicrobial ingredients (such as triclosan) in soaps and other disinfecting and sanitizing products. Further, use of sanitizing products in general increased during the coronavirus (COVID-19) pandemic. We assessed the environmental safety of BAC, BZT, and PCMX based on best available environmental fate and effects data from the scientific literature and privately held sources. The ecological exposure assessment focused on aquatic systems receiving effluent from wastewater-treatment plants (WWTPs) and terrestrial systems receiving land-applied WWTP biosolids. Recent exposure levels were characterized based on environmental monitoring data supplemented by modeling, while future exposures were modeled based on a hypothetical triclosan replacement scenario. Hazard profiles were developed based on acute and chronic studies examining toxicity to aquatic life (fish, invertebrates, algae, vascular plants) and terrestrial endpoints (plants, soil invertebrates, and microbial functions related to soil fertility). Risks to higher trophic levels were not assessed because these compounds are not appreciably bioaccumulative. The risk analysis indicated that neither BZT nor PCMX in any exposure media is likely to cause adverse ecological effects under the exposure scenarios assessed in the present study. Under these scenarios, total BAC exposures are at least three times less than estimated effect thresholds, while margins of safety for freely dissolved BAC are estimated to be greater than an order of magnitude. Because the modeling did not specifically account for COVID-19 pandemic-related usage, further environmental monitoring is anticipated to understand potential changes in environmental exposures as a result of increased antiseptic use. The analysis presented provides a framework to interpret future antiseptic monitoring results, including monitoring parameters and modeling approaches to address bioavailability of the chemicals of interest. Environ Toxicol Chem 2022;41:3095-3115. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Triclosan , Animals , Humans , Benzethonium , Benzalkonium Compounds/toxicity , Chlorides , Triclosan/toxicity , Pandemics , Anti-Infective Agents, Local/toxicity , Soil , Risk Assessment
2.
Toxins (Basel) ; 14(7)2022 07 14.
Article in English | MEDLINE | ID: mdl-35878222

ABSTRACT

Exposure to cyanobacterial hepatotoxins has been linked to the promotion and increased incidence of liver cancer in pre-clinical and epidemiologic studies. The family of hepatotoxins, microcystins (MCs), are produced by over 40 cyanobacterial species found in harmful algal blooms (HABs) worldwide, with MC-LR being the most common and potent MC congener. In the current study, we hypothesized that the low-dose chronic ingestion of Microcystis cyanotoxins via drinking water would promote liver carcinogenesis in pre-initiated mice. Four groups of C3H/HeJ mice received one intraperitoneal (i.p.) injection of diethylnitrosamine (DEN) at 4 weeks of age. Three weeks later, the mice were administered ad libitum drinking water containing one of the following: (1) reverse osmosis, deionized water; (2) water containing 500 mg/L phenobarbital (PB500); (3) water with purified MC-LR (10 µg/L) added; or (4) water containing lysed Microcystis aeruginosa (lysate; 10 µg/L total MCs). The exposure concentrations were based on environmentally relevant concentrations and previously established Ohio EPA recreational water MC guidelines. Throughout the 30-week exposure, mouse weights, food consumption, and water consumption were not significantly impacted by toxin ingestion. We found no significant differences in the number of gross and histopathologic liver lesion counts across the treatment groups, but we did note that the PB500 group developed lesion densities too numerous to count. Additionally, the proportion of lesions classified as hepatocellular carcinomas in the MC-LR group (44.5%; p < 0.05) and lysate group (55%; p < 0.01) was significantly higher compared to the control group (14.9%). Over the course of the study, the mice ingesting the lysate also had a significantly lower survival probability (64.4%; p < 0.001) compared to water (96.8%), PB500 (95.0%), and MC-LR (95.7%) exposures. Using cyanotoxin levels at common recreational water concentration levels, we demonstrate the cancer-promoting effects of a single cyanotoxin MC congener (MC-LR). Furthermore, we show enhanced hepatocarcinogenesis and significant mortality associated with combinatorial exposure to the multiple MCs and bioactive compounds present in lysed cyanobacterial cells­a scenario representative of the ingestion exposure route, such as HAB-contaminated water and food.


Subject(s)
Drinking Water , Liver Neoplasms , Microcystis , Toxins, Biological , Animals , Carcinogenesis/chemically induced , Eating , Liver Neoplasms/chemically induced , Mice , Mice, Inbred C3H , Microcystins , Toxins, Biological/pharmacology
3.
Ecotoxicol Environ Saf ; 206: 111204, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32871519

ABSTRACT

Microcystins (MCs) are the most prevalent cyanotoxins reported in freshwater. While numerous studies have examined the toxicological impacts of MCs on mammalian systems, very few have examined the chronic impacts of MCs on the gut microbiome of exposed organisms. Our understanding of the relationship of MCs, especially lysed toxic cyanobacteria, and the gut microbiota is very limited. The objective of this study was to determine the impacts of MC-LR and Microcystis lysate ingestion on the gut microbiome in a hepatocellular carcinoma mouse model, simulating a high-risk population and exposure at an environmentally relevant MC level. Mice were assigned to 4 groups (MC-LR; Microcystis lysate; Negative control; Positive (liver carcinogen) control). Fecal samples were collected every 8 weeks. Bacterial community and colony counts were analyzed. The abundance of Firmicutes in the positive control and lysate group was higher than the negative control and MC group. Exposure to MC-LR or lysate was associated with significantly decreased bacterial diversity. A distinct separation of the three groups (MC-LR/lysate/carcinogen) from the negative was much more apparent in their gut microbiome as the exposure time increased. The MC-LR and lysate groups showed gut microbiome structure responding to lipid metabolism disturbance and high stress. Bacterial colony count was significantly lower in all the treated groups than the negative control. Our study highlights that chronic exposure to MC-LR and Microcystis lysate negatively impacts gut microbiome succession and altered the bacterial community structure into the one similar to the carcinogen group, which may indicate that the change favors progression of hepatocellular carcinoma. In a future study, more in-depth investigation is warranted to better understand the liver-gut nexus in promoting liver cancer among those exposed to MC and toxic cyanobacteria.


Subject(s)
Gastrointestinal Microbiome/drug effects , Liver Neoplasms, Experimental/microbiology , Microcystins/toxicity , Microcystis/metabolism , Toxins, Biological/toxicity , Animals , Feces/microbiology , Gastrointestinal Microbiome/genetics , Lipid Metabolism , Liver/metabolism , Liver/pathology , Liver Neoplasms, Experimental/metabolism , Mice , Mice, Inbred C3H , Neoplasms
4.
Toxins (Basel) ; 10(11)2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30373283

ABSTRACT

Microcystin (MC) exposure is an increasing concern because more geographical locations are covered with cyanobacterial blooms as eutrophication and bloom-favoring environmental factors become more prevalent worldwide. Acute MC exposure has been linked to gastrointestinal distress, liver toxicity, and death in extreme circumstances. The goal of this study was to provide an accurate and comprehensive description of MC-LRs impacts on liver pathology, clinical chemistry, and gap junction intercellular communication (GJIC) in CD-1 male and female mice. Mice were exposed to 0, 3000, and 5000/4000 µg/kg/day MC-LR, daily for 7 days, and were necropsied on Day 8. Blood samples for clinical chemistry analysis were processed to serum, while liver sections were fixed for histopathology or evaluated for GJIC using fluorescent cut-load dye. Results show a dose-dependent relationship with MC-LR exposure and hepatocellular hypertrophy, degradation, and necrosis. Clinical chemistry parameters alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, and cholesterol increased significantly in MC-LR exposed mice. Clinical chemistry parameter analysis showed significantly increased susceptibility to MC-LR in females compared to males. Changes in GJIC were not noted, but localization of hepatotoxicity near the central veins and midlobular areas was seen. Future toxicity studies involving MCs should consider response differences across sexes, differing MC congeners, and combinatorial exposures involving other cyanotoxins.


Subject(s)
Liver/drug effects , Microcystins/toxicity , Animals , Cell Communication/drug effects , Female , Gap Junctions/drug effects , Gap Junctions/physiology , Liver/pathology , Liver/physiology , Male , Marine Toxins , Mice , Microcystins/administration & dosage , Sex Characteristics
5.
Article in English | MEDLINE | ID: mdl-29985758

ABSTRACT

Microcystin (MC) is a hepatotoxin produced by various cyanobacteria during harmful algal blooms (HAB's) in freshwater environments. Advanced treatment methods can remove MC from drinking water, but are costly and do not address recreational water exposure and ecosystem health concerns. Here we investigate the feasibility of utilizing plastics as a MC-adsorbing material, for use in water resources used for recreation, agriculture, aquaculture and drinking water. Water containing 20 µg/L MC-LR was exposed to polypropylene (PP) plastic for a six-day period at varying temperatures (22, 37, 65°C). Water samples were then collected at 0, 1, 2, and 6 hour-intervals to examine short term treatment feasibility. Samples were also taken at 24 hours, 3 days, and 6 days to determine long-term treatment effectiveness. MC concentrations were analyzed using ELISA. Results showed a maximal reduction of nearly 70% of MC-LR after a 6-day treatment with PP at 65°C. Temperature enhanced MC-LR reduction over a 6-day period: 70% reduction at 65°C; 50% at 37°C; 38% at 22°C. We propose an inexpensive intervention strategy which can be deployed rapidly on-site in various source waters, including in resource-limited settings. During the high peak of HAB season, the strategy can be applied in source waters, alleviating water treatment burden for treatment plants, lowering treatment costs and reducing chemical usage.


Subject(s)
Microcystins/isolation & purification , Plastics/chemistry , Polypropylenes/chemistry , Water Purification/methods , Adsorption , Cost-Benefit Analysis , Cyanobacteria/metabolism , Ecosystem , Harmful Algal Bloom/physiology , Humans , Marine Toxins , Microcystins/metabolism , Plastics/pharmacokinetics , Polypropylenes/pharmacokinetics , Recycling , Waste Disposal Facilities/economics , Water Purification/economics
6.
Environ Sci Technol ; 52(15): 8215-8223, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29952549

ABSTRACT

Freshwater harmful algal blooms (HABs), driven by nutrient inputs from anthropogenic sources, pose unique risks to human and ecological health worldwide. A major nutrient contributor is agricultural land use, specifically tile drainage discharge. Small lakes and ponds are at elevated risk for HAB appearance, as they are uniquely sensitive to nutrient input. HABs introduce exposure risk to microcystin (MC), hepatotoxic and potentially carcinogenic cyanotoxins. To investigate the impact of anthropogenic land use on small lakes and ponds, 24 sites in central Ohio were sampled over a 3-month period in late summer of 2015. MC concentration, microbial community structure, and water chemistry were analyzed. Land use intensity, including tile drainage systems, was the driver of clustering in principle component analysis, ultimately contributing to nutrient deposition, a driver of HABs. Relative abundance of HAB-forming genera was correlated with elevated concentrations of nitrate and soluble reactive phosphate. One location (FC) showed MC concentrations exceeding 875 µg/L and large community shifts in ciliates (Oligohymenophorea) associated with hypoxic conditions. The prokaryotic community at FC was dominated by Planktothrix sp. These results demonstrate the impact of HABs in small lakes and ponds, and that prevailing issues extend beyond cyanotoxins, such as cascading impacts on other trophic levels.


Subject(s)
Cyanobacteria , Microbiota , Harmful Algal Bloom , Humans , Lakes , Ohio
7.
Int J Environ Health Res ; 26(4): 361-80, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26608711

ABSTRACT

High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.


Subject(s)
Fresh Water/analysis , Hydraulic Fracking , Water Pollution, Chemical/analysis , Water Quality , Environmental Monitoring , Humans , Hydraulic Fracking/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...