Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med Rep ; 27(3)2023 Mar.
Article in English | MEDLINE | ID: mdl-36799151

ABSTRACT

The present study aimed to identify the function and expression of trimethylated protein histone H3 lysine 36 (H3K36)me3 and the upstream specific enzyme histone methyltransferase SET domain containing 2 (SETD2), during the differentiation of hepatic oval cells (HOCs) into cholangiocytes in mice following partial liver resection and fed with 2­acetamidofluorene. HOCs were isolated from Kunming male mice fed with 2­acetamidofluorene for 10 days. Their liver tissues were then isolated following partial liver resection and another week of 2­acetamidofluorene treatment. HOCs were collected following a two­step enzyme digestion procedure involving protease E and collagenase 4. The target cells were cultured in DMEM/F12 supplemented with 10 µg/ml EGF, 5 µg/ml stem cell growth factor and 5 µg/ml leukemia inhibitory factor. Target cells using the markers OV­6, CK­19, SETD2, H3K36me3, were detected with flow cytometry and immunofluorescence microscopy; reverse transcription­quantitative PCR and western blotting were used to quantify the protein levels of SETD2 and H3K36me3. The retrieved primary hepatocytes developed into cholangiocytes with increasing CK­19 and decreasing OV­6 expression in each subsequent passage, whereas the SETD2 and H3K36me3 levels gradually increased, suggesting the possible involvement of both of these factors in differentiation.


Subject(s)
Histones , Lysine , Mice , Male , Animals , Histones/metabolism , Histone Methyltransferases/metabolism , Lysine/metabolism , PR-SET Domains , Cell Differentiation , Epithelial Cells/metabolism , Bile Ducts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...