Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36991989

ABSTRACT

BACKGROUND: The formation of large accelerations on the head and cervical spine during a backward fall is particularly dangerous due to the possibility of affecting the central nervous system (CNS). It may eventually lead to serious injuries and even death. This research aimed to determine the effect of the backward fall technique on the linear acceleration of the head in the transverse plane in students practicing various sports disciplines. METHODS: The study involved 41 students divided into two study groups. Group A consisted of 19 martial arts practitioners who, during the study, performed falls using the side aligning of the body technique. Group B consisted of 22 handball players who, during the study, performed falls using the technique performed in a way similar to a gymnastic backward roll. A rotating training simulator (RTS) was used to force falls, and a Wiva® Science apparatus was used to assess acceleration. RESULTS: The greatest differences in backward fall acceleration were found between the groups during the buttocks' contact with the ground. Larger changes in head acceleration were noted in group B. CONCLUSIONS: The lower changes in head acceleration obtained in physical education students falling with a lateral body position compared to students training handball indicate their lower susceptibility to head, cervical spine, and pelvis injuries when falling backwards as caused by horizontal force.


Subject(s)
Martial Arts , Posture , Humans , Buttocks , Martial Arts/physiology , Acceleration , Biomechanical Phenomena
2.
Article in English | MEDLINE | ID: mdl-35055574

ABSTRACT

(1) Background: This research aimed to determine the effect of the backward fall technique on the sagittal linear acceleration of the head in students training in different sports. (2) Methods: The study involved 41 students divided into two study groups. Group A included 19 students training in martial arts who practised falls with side aligning of the body. Group B included 22 handball players who practised falls performed in a way similar to a gymnastic backward roll. A rotating training simulator (RTS) was used to force falls, and Wiva ® Science apparatus was used to assess acceleration. (3) Results: Significant changes in head acceleration were only obtained between immediate fall tests (IFTs) and forced fall tests (FFTs) in group B. Significant differences were noted between groups for the IFT and FFT. Greater changes in head acceleration were noted in group B. (4) Conclusions: Smaller changes in head acceleration in group A students indicate a lower susceptibility to head, pelvic and cervical spine injuries in falls performed backward with side aligning of the body. This technique in group A limited the differences in head acceleration between IFTs and FFTs. Negative acceleration values obtained in group B confirmed that the head may suffer a moment of force, tilting it backwards, but then forward when the buttocks hit the ground.


Subject(s)
Acceleration , Martial Arts , Accidental Falls , Biomechanical Phenomena , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...