Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(1): 016401, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061467

ABSTRACT

We propose an experiment to identify the topological order of the ν=5/2 state through a measurement of the electric conductance of a mesoscopic device. Our setup is based on interfacing ν=2,5/2, and 3 in the same device. Its conductance can unambiguously establish or rule out the particle-hole symmetric Pfaffian topological order, which is supported by recent thermal measurements. Additionally, it distinguishes between the Moore-Read and anti-Pfaffian topological orders, which are favored by numerical calculations.

2.
Phys Rev Lett ; 125(23): 236802, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337198

ABSTRACT

The quest for non-Abelian quasiparticles has inspired decades of experimental and theoretical efforts, where the scarcity of direct probes poses a key challenge. Among their clearest signatures is a thermal Hall conductance with quantized half-integer value in units of κ_{0}=π^{2}k_{B}^{2}T/3h (T is temperature, h the Planck constant, k_{B} the Boltzmann constant). Such values were recently observed in a quantum-Hall system and a magnetic insulator. We show that nontopological "thermal metal" phases that form due to quenched disorder may disguise as non-Abelian phases by well approximating the trademark quantized thermal Hall response. Remarkably, the quantization here improves with temperature, in contrast to fully gapped systems. We provide numerical evidence for this effect and discuss its possible implications for the aforementioned experiments.

3.
Phys Rev Lett ; 124(9): 096802, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32202877

ABSTRACT

Time crystals form when arbitrary physical states of a periodically driven system spontaneously break discrete time-translation symmetry. We introduce one-dimensional time-crystalline topological superconductors, for which time-translation symmetry breaking and topological physics intertwine-yielding anomalous Floquet Majorana modes that are not possible in free-fermion systems. Such a phase exhibits a bulk magnetization that returns to its original form after two drive periods, together with Majorana end modes that recover their initial form only after four drive periods. We propose experimental implementations and detection schemes for this new state.

4.
Phys Rev Lett ; 121(2): 026801, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30085751

ABSTRACT

The thermal Hall conductance in the half-filled first Landau level was recently measured to take the quantized noninteger value κ_{xy}=5/2 (in units of temperature times π^{2}k_{B}^{2}/3h), which indicates a non-Abelian phase of matter. Such exotic states have long been predicted to arise at this filling factor, but the measured value disagrees with numerical studies, which predict κ_{xy}=3/2 or 7/2. We resolve this contradiction by invoking the disorder-induced formation of mesoscopic puddles with locally κ_{xy}=3/2 or 7/2. Interactions between these puddles generate a coherent macroscopic state that exhibits a plateau with quantized κ_{xy}=5/2. The non-Abelian quasiparticles characterizing this phase are distinct from those of the microscopic puddles and, by the same mechanism, could even emerge from a system comprised of microscopic Abelian puddles.

5.
Phys Rev Lett ; 117(13): 136802, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715133

ABSTRACT

We introduce a particle-hole-symmetric metallic state of bosons in a magnetic field at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2π Berry flux protected by particle-hole and discrete rotation symmetries. We also construct an alternative particle-hole symmetric state-distinct in the presence of inversion symmetry-without Berry flux. As in the Dirac composite Fermi liquid introduced by Son [Phys. Rev. X 5, 031027 (2015)], breaking particle-hole symmetry recovers the familiar Chern-Simons theory. We discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as signatures in experiments and simulations.

6.
Phys Rev Lett ; 117(1): 016802, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27419581

ABSTRACT

We explicitly derive the duality between a free electronic Dirac cone and quantum electrodynamics in (2+1) dimensions (QED_{3}) with N=1 fermion flavors. The duality proceeds via an exact, nonlocal mapping from electrons to dual fermions with long-range interactions encoded by an emergent gauge field. This mapping allows us to construct parent Hamiltonians for exotic topological-insulator surface phases, derive the particle-hole-symmetric field theory of a half-filled Landau level, and nontrivially constrain QED_{3} scaling dimensions. We similarly establish duality between bosonic topological insulator surfaces and N=2 QED_{3}.

7.
Phys Rev Lett ; 116(3): 036803, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849608

ABSTRACT

We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.

8.
Phys Rev Lett ; 108(26): 267001, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-23005007

ABSTRACT

We construct a theory of continuous stripe melting quantum phase transitions in two-dimensional metals and the associated Fermi surface reconstruction. Such phase transitions are strongly coupled but yet theoretically tractable in situations where the stripe ordering is destroyed by proliferating doubled dislocations of the charge stripe order. The resulting non-Landau quantum critical point has strong stripe fluctuations which we show decouple dynamically from the Fermi surface even though static stripe ordering reconstructs the Fermi surface. We discuss connections to various stripe phenomena in the cuprates. We point out several puzzling aspects of old experimental results [G. Aeppli et al., Science 278, 1432 (1997)] on singular stripe fluctuations in the cuprates, and provide a possible explanation within our theory. These results may thus have been the first observation of non-Landau quantum criticality in an experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...