Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742661

ABSTRACT

AIMS: Atrial fibrillation (AF), the most common cardiac arrhythmia favoring ischemic stroke and heart failure involves left atrial remodeling, fibrosis and a complex interplay between cardiovascular risk factors. This study examined whether activated factor X (FXa) induces pro-remodeling and pro-fibrotic responses in atrial endothelial cells (AECs) and human atrial tissues and determined the underlying mechanisms. METHODS AND RESULTS: AECs were from porcine hearts and human right atrial appendages (RAA) from patients undergoing heart surgery. Protein expression levels were assessed by Western blot and immunofluorescence staining, mRNA levels by RT-qPCR, formation of reactive oxygen species (ROS) and NO using fluorescent probes, thrombin and angiotensin II generation by specific assays, fibrosis by Sirius red staining and senescence by senescence-associated beta-galactosidase (SA-ß-gal) activity.In AECs, FXa increased ROS formation, senescence (SA-ß-gal activity, p53, p21), angiotensin II generation and the expression of pro-inflammatory (VCAM-1, MCP-1), pro-thrombotic (tissue factor), pro-fibrotic (TGF-ß and collagen-1/3a) and pro-remodeling (MMP-2/9) markers whereas eNOS levels and NO formation were reduced. These effects were prevented by inhibitors of FXa but not thrombin, protease-activated receptors antagonists (PAR-1/2) and inhibitors of NADPH oxidases, ACE, AT1R, SGLT1/SGLT2. FXa also increased expression levels of ACE1, AT1R, SGLT1/2 proteins which was prevented by SGLT1/2 inhibitors. Human RAA showed tissue factor mRNA levels that correlated with markers of endothelial activation, pro-remodeling and pro-fibrotic responses and SGLT1/2 mRNA levels. They also showed protein expression levels of ACE1, AT1R, p22phox, SGLT1/2, and immunofluorescence signals of nitrotyrosine and SGLT1/2 colocalized with those of CD31. FXa increased oxidative stress levels which were prevented by inhibitors of the AT1R/NADPH oxidases/SGLT1/2 pathway. CONCLUSIONS: FXa promotes oxidative stress triggering premature endothelial senescence and dysfunction associated with pro-thrombotic, pro-remodeling and pro-fibrotic responses in AECs and in human RAA involving the AT1R/NADPH oxidases/SGLT1/2 pro-oxidant pathway. Targeting this pathway may be of interest to prevent atrial remodeling and the progression of atrial fibrillation substrate.

2.
J Thromb Haemost ; 22(1): 286-299, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37797691

ABSTRACT

BACKGROUND: COVID-19 is associated with an increased risk of cardiovascular complications. Although cytokines have a predominant role in endothelium damage, the precise molecular mechanisms are far from being elucidated. OBJECTIVES: The present study hypothesized that inflammation in patients with COVID-19 contributes to endothelial dysfunction through redox-sensitive SGLT2 overexpression and investigated the protective effect of SGLT2 inhibition by empagliflozin. METHODS: Human plasma samples were collected from patients with acute, subacute, and long COVID-19 (n = 100), patients with non-COVID-19 and cardiovascular risk factors (n = 50), and healthy volunteers (n = 25). Porcine coronary artery endothelial cells (ECs) were incubated with plasma (10%). Protein expression levels were determined using Western blot analyses and immunofluorescence staining, mRNA expression by quantitative reverse transcription-polymerase chain reaction, and the level of oxidative stress by dihydroethidium staining. Platelet adhesion, aggregation, and thrombin generation were determined. RESULTS: Increased plasma levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, monocyte chemoattractant protein-1, and soluble intercellular adhesion molecule-1 were observed in patients with COVID-19. Exposure of ECs to COVID-19 plasma with high cytokines levels induced redox-sensitive upregulation of SGLT2 expression via proinflammatory cytokines IL-1ß, IL-6, and tumor necrosis factor-α which, in turn, fueled endothelial dysfunction, senescence, NF-κB activation, inflammation, platelet adhesion and aggregation, von Willebrand factor secretion, and thrombin generation. The stimulatory effect of COVID-19 plasma was blunted by neutralizing antibodies against proinflammatory cytokines and empagliflozin. CONCLUSION: In patients with COVID-19, proinflammatory cytokines induced a redox-sensitive upregulation of SGLT2 expression in ECs, which in turn promoted endothelial injury, senescence, platelet adhesion, aggregation, and thrombin generation. SGLT2 inhibition with empagliflozin appeared as an attractive strategy to restore vascular homeostasis in COVID-19.


Subject(s)
COVID-19 , Vascular Diseases , Animals , Humans , COVID-19/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Post-Acute COVID-19 Syndrome , Reactive Oxygen Species/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/pharmacology , Swine , Thrombin/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Clin Sci (Lond) ; 137(1): 47-63, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36519413

ABSTRACT

Acute kidney injury (AKI) is a common complication of cardiovascular diseases (CVDs) in both males and females, increasing mortality rate substantially. Premenopausal females appear to be more protected, suggesting a potential protective role of female sex hormones. Here, we tested the hypothesis that ovariectomy (OVX) eliminates the beneficial effect of female sex on renal protection following acute myocardial infarction (MI). Seven days post-MI, both sexes exhibited worsened kidney function and a substantial decrease in total kidney NAD levels. Unlike MI female mice, MI males showed exacerbated morphological alterations with increased proinflammatory, proapoptotic, and profibrotic biomarkers. The expression of NAD+ biosynthetic enzymes NAMPT and NMRK-1 was increased in MI females only, while males showed a substantial increase in NAD+ consuming enzyme PARP-1. OVX did not eliminate the female-sex protection of glomerular morphology but was associated with swelling of proximal convoluted tubules with MI as in males. With OVX, MI females had enhanced proinflammatory cytokine release, and a further decrease in creatinine clearance and urine output was observed. Our findings suggest that MI induced AKI in both sexes with pre-menopausal female mice being more protected. Ovariectomy worsens aspects of AKI in females after MI, which may portend increased risk for development of chronic kidney disease.


Subject(s)
Acute Kidney Injury , Myocardial Infarction , Male , Humans , Mice , Female , Animals , Sex Characteristics , NAD , Kidney/metabolism , Myocardial Infarction/metabolism , Ovariectomy/adverse effects , Acute Kidney Injury/metabolism
4.
Vascul Pharmacol ; 146: 107095, 2022 10.
Article in English | MEDLINE | ID: mdl-35944842

ABSTRACT

SGLT2 inhibitors (SGLT2i) showed pronounced beneficial effects in patients with heart failure but the underlying mechanisms remain unclear. We evaluated the effect of empagliflozin, selective SGLT2i, on hypertension-induced cardiac and vascular dysfunction. Male Wistar rats received diet with or without empagliflozin (30 mg/kg/day). After 1 week, a hypertensive dose of Ang II (0.4 mg/kg/day) was administered using osmotic mini-pumps for 4 weeks. Systolic blood pressure was determined by sphygmomanometry, the cardiac function by echocardiography and ex vivo (coronary microvascular endothelial cell activation, LV remodeling and fibrosis responses), and the systemic micro and macrovascular endothelial cell activation ex vivo. Empagliflozin treatment did not affect the Ang II-induced hypertensive response. Ang II treatment increased LV mass and induced LV diastolic dysfunction, fibrosis, collagen I and ANP expression, and infiltration of macrophages. In the vasculature, it caused eNOS upregulation in the aorta and down-regulation in mesenteric microvessels associated with increased oxidative stress, ACE, AT1R, VCAM-1, MCP-1, MMP-2, and MMP-9 and collagen I expression, increased endothelial SGLT1 staining in the aorta, mesenteric and coronary microvessels, increased SGLT1 and 2 protein levels in the aorta. All Ang II-induced cardiac and vascular responses were reduced by the empagliflozin treatment. Thus, the SGLT2i effectively attenuated the deleterious impact of Ang II-induced hypertension on target organs including cardiac diastolic dysfunction and remodeling, and endothelial cell activation and pro-atherosclerotic, pro-fibrotic and pro-remodeling responses in macro and microvessels despite persistent hypertension.


Subject(s)
Hypertension , Sodium-Glucose Transporter 2 Inhibitors , Animals , Male , Rats , Angiotensin II/pharmacology , Benzhydryl Compounds , Blood Pressure , Collagen , Endothelial Cells/metabolism , Fibrosis , Glucosides , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/prevention & control , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Rats, Wistar , Sodium-Glucose Transporter 1 , Sodium-Glucose Transporter 2 , Vascular Cell Adhesion Molecule-1/metabolism
5.
J Am Heart Assoc ; 10(24): e023227, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34873915

ABSTRACT

Background The complexity of the interaction between metabolic dysfunction and cardiovascular complications has long been recognized to extend beyond simple perturbations of blood glucose levels. Yet, structured interventions targeting the root pathologies are not forthcoming. Growing evidence implicates the inflammatory changes occurring in perivascular adipose tissue (PVAT) as early instigators of cardiovascular deterioration. Methods and Results We used a nonobese prediabetic rat model with localized PVAT inflammation induced by hypercaloric diet feeding, which dilutes inorganic phosphorus (Pi) to energy ratio by 50%, to investigate whether Pi supplementation ameliorates the early metabolic impairment. A 12-week Pi supplementation at concentrations equivalent to and twice as much as that in the control diet was performed. The localized PVAT inflammation was reversed in a dose-dependent manner. The increased expression of UCP1 (uncoupling protein1), HIF-1α (hypoxia inducible factor-1α), and IL-1ß (interleukin-1ß), representing the hallmark of PVAT inflammation in this rat model, were reversed, with normalization of PVAT macrophage polarization. Pi supplementation restored the metabolic efficiency consistent with its putative role as an UCP1 inhibitor. Alongside, parasympathetic autonomic and cerebrovascular dysfunction function observed in the prediabetic model was reversed, together with the mitigation of multiple molecular and histological cardiovascular damage markers. Significantly, a Pi-deficient control diet neither induced PVAT inflammation nor cardiovascular dysfunction, whereas Pi reinstatement in the diet after a 10-week exposure to a hypercaloric low-Pi diet ameliorated the dysfunction. Conclusions Our present results propose Pi supplementation as a simple intervention to reverse PVAT inflammation and its early cardiovascular consequences, possibly through the interference with hypercaloric-induced increase in UCP1 expression/activity.


Subject(s)
Adipose Tissue , Dietary Supplements , Inflammation , Phosphorus , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Inflammation/complications , Inflammation/prevention & control , Metabolic Diseases/prevention & control , Phosphorus/therapeutic use , Prediabetic State , Rats
6.
Am J Physiol Endocrinol Metab ; 319(5): E835-E851, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32865011

ABSTRACT

Cardiac autonomic neuropathy (CAN) is an early cardiovascular manifestation of type 2 diabetes (T2D) that constitutes an independent risk factor for cardiovascular mortality and morbidity. Nevertheless, its underlying pathophysiology remains poorly understood. We recently showed that localized perivascular adipose tissue (PVAT) inflammation underlies the incidence of parasympathetic CAN in prediabetes. Here, we extend our investigation to provide a mechanistic framework for the evolution of autonomic impairment as the metabolic insult worsens. Early metabolic dysfunction was induced in rats fed a mild hypercaloric diet. Two low-dose streptozotocin injections were used to evoke a state of late decompensated T2D. Cardiac autonomic function was assessed by invasive measurement of baroreflex sensitivity using the vasoactive method. Progression into T2D was associated with aggravation of CAN to include both sympathetic and parasympathetic arms. Unlike prediabetic rats, T2D rats showed markers of brainstem neuronal injury and inflammation as well as increased serum levels of IL-1ß. Experiments on PC12 cells differentiated into sympathetic-like neurons demonstrated that brainstem injury observed in T2D rats resulted from exposure to possible proinflammatory mediators in rat serum rather than a direct effect of the altered metabolic profile. CAN and the associated cardiovascular damage in T2D only responded to combined treatment with insulin to manage hyperglycemia in addition to a nonhypoglycemic dose of metformin or pioglitazone providing an anti-inflammatory effect, coincident with the effect of these combinations on serum IL-1ß. Our present results indicate that CAN worsening upon progression to T2D involves brainstem inflammatory changes likely triggered by systemic inflammation.


Subject(s)
Baroreflex/physiology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Neuropathies/physiopathology , Hypoglycemic Agents/therapeutic use , Inflammation/physiopathology , Animals , Baroreflex/drug effects , Blood Pressure/drug effects , Blood Pressure/physiology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/blood , Diabetic Neuropathies/drug therapy , Disease Progression , Hemodynamics/drug effects , Hemodynamics/physiology , Hypoglycemic Agents/administration & dosage , Inflammation/blood , Inflammation/drug therapy , Insulin/administration & dosage , Insulin/therapeutic use , Interleukin-1beta/blood , Male , Pioglitazone/administration & dosage , Pioglitazone/therapeutic use , Rats , Rats, Sprague-Dawley
7.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: mdl-32519752

ABSTRACT

The impact of cigarette smoking (CS) on kidney homeostasis in the presence of myocardial infarction (MI) in both males and females remains poorly elucidated. C57BL6/J mice were exposed to 2 weeks of CS prior to MI induction followed by 1 week of CS exposure in order to investigate the impact of CS on kidney damage in the presence of MI. Cardiac hemodynamic analysis revealed a significant decrease in ejection fraction (EF) in CS-exposed MI male mice when compared with the relative female subjects, whereas cardiac output (CO) comparably decreased in CS-exposed MI mice of both sexes. Kidney structural alterations, including glomerular retraction, proximal convoluted tubule (PCT) cross-sectional area, and total renal fibrosis were more pronounced in CS-exposed MI male mice when compared with the relative female group. Although renal reactive oxygen species (ROS) generation and glomerular DNA fragmentation significantly increased to the same extent in CS-exposed MI mice of both sexes, alpha-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) significantly increased in CS-exposed MI male mice, only. Metabolically, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide riboside-1 (NMRK-1) substantially increased in CS-exposed MI female mice only, whereas sirtuin (SIRT)-1 and SIRT-3 substantially decreased in CS-exposed MI male mice compared with their relative female group. Additionally, renal NAD levels significantly decreased only in CS-exposed MI male mice. In conclusion, MI female mice exhibited pronounced renal protection following CS when compared with the relative male groups.


Subject(s)
Kidney Diseases/prevention & control , Kidney/pathology , Myocardial Infarction/complications , Premenopause , Smoke , Tobacco Products , Actins/genetics , Actins/metabolism , Animals , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Cytokines/genetics , Cytokines/metabolism , DNA Damage , Disease Models, Animal , Female , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Reactive Oxygen Species/metabolism , Sex Factors , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism
8.
Biochem Pharmacol ; 178: 114041, 2020 08.
Article in English | MEDLINE | ID: mdl-32439335

ABSTRACT

Prediabetes is a highly prevalent stage of early metabolic dysfunction that poses a high risk for cardiovascular and cognitive impairment without a clear pathological mechanism. Here, we used a non-obese prediabetic rat model previously developed in our laboratory to examine this mechanism. These rats were subjected to a mild metabolic challenge leading to hyperinsulinemia without hyperglycemia or obesity. This was associated with impaired hippocampal-dependent cognitive functions together with an augmented cerebrovascular myogenic tone. Consequently, hippocampal expression of hypoxia-inducible factor-1α increased, together with markers of mitochondrial dysfunction and oxidative stress. In parallel, the phosphorylation of Akt and mTOR increased in the prediabetic rat hippocampus alongside increased expression of p62 and LC3 puncta indicating a possible repression of autophagic flux. Neuroinflammation and neuronal apoptosis were detected in the hippocampal CA1 area as increased CD68 and IBA-1 staining, as well as increased TUNEL staining and caspase-3 activity, respectively. Treatment with metformin or pioglitazone, at a previously determined vasculoprotective non-hypoglycemic dose, reversed the cerebrovascular and hippocampal molecular alterations and ameliorated cognitive function. The present study proposes a mechanistic framework whereby prediabetic cerebrovascular impairment potentially leads to a mild hypoxic state that is exacerbated by the metabolic dysfunction-driven suppression of neuronal autophagy leading to cognitive impairment.


Subject(s)
Autophagy/physiology , Blood-Brain Barrier/metabolism , Cerebrovascular Disorders/metabolism , Cognitive Dysfunction/metabolism , Hypoglycemic Agents/therapeutic use , Prediabetic State/metabolism , Animals , Autophagy/drug effects , Blood-Brain Barrier/drug effects , Cerebrovascular Disorders/drug therapy , Cognitive Dysfunction/drug therapy , Disease Models, Animal , Hypoglycemic Agents/pharmacology , Male , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/metabolism , Prediabetic State/drug therapy , Random Allocation , Rats , Rats, Sprague-Dawley
9.
J Pharmacol Exp Ther ; 371(3): 567-582, 2019 12.
Article in English | MEDLINE | ID: mdl-31511364

ABSTRACT

Endothelial dysfunction is a hallmark of diabetic vasculopathies. Although hyperglycemia is believed to be the culprit causing endothelial damage, the mechanism underlying early endothelial insult in prediabetes remains obscure. We used a nonobese high-calorie (HC)-fed rat model with hyperinsulinemia, hypercholesterolemia, and delayed development of hyperglycemia to unravel this mechanism. Compared with aortic rings from control rats, HC-fed rat rings displayed attenuated acetylcholine-mediated relaxation. While sensitive to nitric oxide synthase (NOS) inhibition, aortic relaxation in HC-rat tissues was not affected by blocking the inward-rectifier potassium (Kir) channels using BaCl2 Although Kir channel expression was reduced in HC-rat aorta, Kir expression, endothelium-dependent relaxation, and the BaCl2-sensitive component improved in HC rats treated with atorvastatin to reduce serum cholesterol. Remarkably, HC tissues demonstrated increased reactive species (ROS) in smooth muscle cells, which was reversed in rats receiving atorvastatin. In vitro ROS reduction, with superoxide dismutase, improved endothelium-dependent relaxation in HC-rat tissues. Significantly, connexin-43 expression increased in HC aortic tissues, possibly allowing ROS movement into the endothelium and reduction of eNOS activity. In this context, gap junction blockade with 18-ß-glycyrrhetinic acid reduced vascular tone in HC rat tissues but not in controls. This reduction was sensitive to NOS inhibition and SOD treatment, possibly as an outcome of reduced ROS influence, and emerged in BaCl2-treated control tissues. In conclusion, our results suggest that early metabolic challenge leads to reduced Kir-mediated endothelium-dependent hyperpolarization, increased vascular ROS potentially impairing NO synthesis and highlight these channels as a possible target for early intervention with vascular dysfunction in metabolic disease. SIGNIFICANCE STATEMENT: The present study examines early endothelial dysfunction in metabolic disease. Our results suggest that reduced inward-rectifier potassium channel function underlies a defective endothelium-mediated relaxation possibly through alteration of nitric oxide synthase activity. This study provides a possible mechanism for the augmentation of relatively small changes in one endothelium-mediated relaxation pathway to affect overall endothelial response and highlights the potential role of inward-rectifier potassium channel function as a therapeutic target to treat vascular dysfunction early in the course of metabolic disease.


Subject(s)
Endothelium, Vascular/physiology , Hypercholesterolemia/physiopathology , Hyperinsulinism/physiopathology , Nitric Oxide/physiology , Reactive Oxygen Species/metabolism , Vasodilation/physiology , Animals , Atorvastatin/pharmacology , Energy Intake , Gap Junctions/physiology , Male , Potassium Channels, Inwardly Rectifying/physiology , Proto-Oncogene Proteins c-akt/physiology , Rats , Rats, Sprague-Dawley
10.
Transl Res ; 214: 121-143, 2019 12.
Article in English | MEDLINE | ID: mdl-31408626

ABSTRACT

The onset of vascular impairment precedes that of diagnostic hyperglycemia in diabetic patients suggesting a vascular insult early in the course of metabolic dysfunction without a well-defined mechanism. Mounting evidence implicates adipose inflammation in the pathogenesis of insulin resistance and diabetes. It is not certain whether amelioration of adipose inflammation is sufficient to preclude vascular dysfunction in early stages of metabolic disease. Recent findings suggest that antidiabetic drugs, metformin, and pioglitazone, improve vascular function in prediabetic patients, without an indication if this protective effect is mediated by reduction of adipose inflammation. Here, we used a prediabetic rat model with delayed development of hyperglycemia to study the effect of metformin or pioglitazone on adipose inflammation and vascular function. At the end of the metabolic challenge, these rats were neither obese, hypertensive, nor hyperglycemic. However, they showed increased pressor responses to phenylephrine and augmented aortic and mesenteric contraction. Vascular tissues from prediabetic rats showed increased Rho-associated kinase activity causing enhanced calcium sensitization. An elevated level of reactive oxygen species was seen in aortic tissues together with increased Transforming growth factor ß1 and Interleukin-1ß expression. Although, no signs of systemic inflammation were detected, perivascular adipose inflammation was observed. Adipocyte hypertrophy, increased macrophage infiltration, and elevated Transforming growth factor ß1 and Interleukin-1ß mRNA levels were seen. Two-week treatment with metformin or pioglitazone or switching to normal chow ameliorated adipose inflammation and vascular dysfunction. Localized perivascular adipose inflammation is sufficient to trigger vascular dysfunction early in the course of diabetes. Interfering with this inflammatory process reverses this early abnormality.


Subject(s)
Adipose Tissue/blood supply , Adipose Tissue/physiopathology , Hypoglycemic Agents/therapeutic use , Inflammation/pathology , Prediabetic State/drug therapy , Prediabetic State/physiopathology , Adipose Tissue/pathology , Animals , Disease Models, Animal , Feeding Behavior , Male , Metformin/pharmacology , Pioglitazone/pharmacology , Prediabetic State/blood , Prediabetic State/metabolism , Protein Kinase Inhibitors/pharmacology , Rats, Wistar , Signal Transduction/drug effects , Vasoconstriction/drug effects , rho-Associated Kinases/metabolism
11.
Curr Opin Pharmacol ; 45: 33-41, 2019 04.
Article in English | MEDLINE | ID: mdl-31031224

ABSTRACT

Over the past three decades, our view of the endothelium rapidly evolved from a static lining of the blood vessels to a dynamic determinant and regulator of vascular tone and homeostasis. It is now widely accepted that endothelial dysfunction is a hallmark of almost every vascular pathology, either as a cause or a consequence. The tight association between the metabolic disease spectrum, ranging from mild alterations of blood lipids profile all the way to diabetes and morbid obesity; and vascular complications argues for a deleterious endothelial remodeling in these conditions. Extensive research demonstrated endothelial changes in these conditions including reduced endothelial nitric oxide activity, altered response to endothelium-dependent hyperpolarization, and increased production of contractile agents. For the most part, studies investigated different aspects of endothelial function in isolation of each other. In this review, we propose a model of an integrated endothelial response and offer an alternative view for potential dysfunction early in the course of metabolic disease continuum. In such a framework, only slight changes in the expression/function of molecular players in one endothelium-dependent pathway would be sufficient to trigger a cascade of events compromising endothelial function. We will also consider the available data describing the possible effects of intervention with different therapeutic agents on endothelial function early in the course of metabolic disease.


Subject(s)
Endothelium, Vascular/physiology , Metabolic Diseases/physiopathology , Nitric Oxide/physiology , Animals , Humans , Vasodilation
12.
Oxid Med Cell Longev ; 2018: 9389784, 2018.
Article in English | MEDLINE | ID: mdl-29643979

ABSTRACT

Cardiac autonomic neuropathy (CAN) is an early cardiovascular complication of diabetes occurring before metabolic derangement is evident. The cause of CAN remains elusive and cannot be directly linked to hyperglycemia. Recent clinical data report cardioprotective effects of some antidiabetic drugs independent of their hypoglycemic action. Here, we used a rat model receiving limited daily increase in calories from fat (HC diet) to assess whether mild metabolic challenge led to CAN in absence of interfering effects of hyperglycemia, glucose intolerance, or obesity. Rats receiving HC diet for 12 weeks showed reduction in baroreceptor sensitivity and heart rate variability despite lack of change in baseline hemodynamic and cardiovascular structural parameters. Impairment of cardiac autonomic control was accompanied with perivascular adipose inflammation observed as an increased inflammatory cytokine expression, together with increased cardiac oxidative stress, and signaling derangement characteristic of diabetic cardiomyopathy. Two-week treatment with metformin or pioglitazone rectified the autonomic derangement and corrected the molecular changes. Switching rats to normal chow but not to isocaloric amounts of HC for two weeks reversed CAN. As such, we conclude that adipose inflammation due to increased fat intake might underlie development of CAN and, hence, the beneficial effects of metformin and pioglitazone.


Subject(s)
Diabetic Cardiomyopathies/drug therapy , Diabetic Neuropathies/drug therapy , Hypoglycemic Agents/pharmacology , Animals , Diabetic Cardiomyopathies/diagnosis , Diabetic Neuropathies/diagnosis , Dietary Fats/administration & dosage , Energy Intake , Glucose Intolerance/diagnosis , Male , Metformin/pharmacology , Pioglitazone , Random Allocation , Rats , Rats, Sprague-Dawley , Thiazolidinediones/pharmacology
13.
J Cardiovasc Echogr ; 27(2): 45-51, 2017.
Article in English | MEDLINE | ID: mdl-28465992

ABSTRACT

BACKGROUND: Echocardiography has been the subject of interest in diagnosing diastolic dysfunction and estimating left ventricular filling pressures (LVFPs). The present study is set to estimate the correlation between the worsening of diastolic parameters and the evidence of inducible ischemia during an exercise stress echocardiography (SE) in comparison with the results of coronary computed tomographic angiogram (CCTA). METHODS: A total of 191 consecutive patients from the executive screening program who underwent exercise SE followed by CCTA were evaluated. Baseline demographics, heart rate, and blood pressure measurements were extracted for analysis. Standard two-dimensional and tissue Doppler imaging parameters were analyzed. Diastolic function was graded at rest and peak exercise. RESULTS: Patients who had worsening of diastolic function by at least one grade had had 2-3-fold higher odds of having abnormal SE. In addition, patients with worsening of diastolic function had higher stress LVFPs (E/e' = 11.7 ± 2.7 vs. E/e' 8.0 ± 2.0; P < 0.0001), more E/e' change >25% (48% vs. 22%, P = 0.012), and were more likely to have obstructive coronary artery disease (CAD) on CCTA (23.8% vs. 9.2%; P = 0.045). A change in E/e' >25% (stress-rest) was highly associated with a positive stress test and abnormal CCTA result. Patients with no change or improvement in diastolic function with stress had a 92% negative predictive value of having normal SE and 91% of normal/nonobstructive CCTA. CONCLUSION: A worsening of diastolic function and a change in E/e' >25% (stress-rest) were associated with abnormal SE, positive stress test, and obstructive CAD when compared to CCTA results.

14.
Case Rep Cardiol ; 2013: 395879, 2013.
Article in English | MEDLINE | ID: mdl-24826281

ABSTRACT

A thrombus in transit through a patent foramen ovale (PFO) with impending paradoxical embolism is an extremely rare event. Due to its transient nature, it is unable to identify the thrombus, and most of the cases have been reported at autopsy. We are reporting a case of thrombus straddling the foramen ovale which was diagnosed by echocardiography and treated surgically. Through this personal case, an exhaustive review of the literature was performed. There were 88 cases reported. We concluded that there is no medical consensus about the best option for treatment. Nevertheless, surgery, which is associated with fewer complications of recurrent embolic events than those of thrombolysis and anticoagulation, appeared to be the best approach in patients who are not at a high surgical risk. Anticoagulant treatment appears to be an acceptable therapeutic alternative to surgery, particularly in patients with comorbidities who are at high surgical risk and for patients with small PFO. Thrombolysis is linked to the highest mortality, which could be explained by the severity of the patient's initial presentation. In conclusion, and after the cumulative effects of these case reports, we propose a diagram consisting of the use of the three therapeutic options in the different clinical scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...