Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(41): 37769-37780, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867722

ABSTRACT

Nanocomposites based on thermoplastic polyurethanes (TPUs) filled with halloysite nanotubes (HNTs) were studied for their physicochemical and biological properties. Nanocomposites containing halloysite nanotube filler contents of 1 and 2% (E+1 and E+2), respectively, were obtained by extrusion. The newly formed E+1 and E+2 nanomaterials exhibited better flexibility and similar thermal properties compared to neat polyurethane. The use of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) thermogram analysis showed that the distribution of halloysite nanotubes in the polymer matrix is more evenly dispersed in the E+1 nanomaterial, where the grains in the E+2 nanomaterial have a greater tendency to form agglomerates. Mechanical tests have shown that nanocomposites with the addition of HNT are characterized by a higher stress at break and elongation at break compared to neat TPU. The results of cytotoxicity tests suggest that the nanocomposite materials express lower toxicity to normal HaCaT and NHDF than to cancer Me45 cells. Further studies showed that the tested materials induced the expression of proinflammatory interleukins IL6 and IL8 in normal cells, but their overexpression in the cancer cell line resulted in cytostatic effects and proliferation reduction. Such a conclusion suggests the possible application of tested materials for regenerative therapies in cancer surgeries.

2.
Materials (Basel) ; 16(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834706

ABSTRACT

Silicones have been used as protective coatings due to their resistance to hydrolytic degradation and UV (ultraviolet) degradation. There is a growing problem with managing organic waste, which can be used as fillers in composites. This research demonstrated the use of organic waste from citrus peels, including grapefruit, lime, lemon, and orange peels. Silicone-based composites were prepared by gravity-casting using 2.5, 5, and 10 wt.% waste filler. Samples made from the composite panels were subjected to static tensile, density, hardness, pin-on-disc, and Schopper-Schlobach abrasion tests. The test results showed that lower tensile strength values characterized the composite materials compared to the silicone used as a filler. All materials had greater hardness than the silicone without the addition. At the same time, composites with a mass density of the filler of 2.5 and 5 wt.% showed more excellent abrasion resistance than the silicone used as a matrix. This research showed that the samples containing 2.5 wt.% grapefruit filler had the best mechanical properties and the lowest abrasive wear.

3.
Materials (Basel) ; 15(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806770

ABSTRACT

When designing a wind turbine, the main objective is to generate maximum effective power with the lowest possible production costs. The power of a wind turbine depends primarily on the aerodynamic properties of its blades. Moreover, the cost of making a blade for a wind turbine, and therefore also for the entire wind turbine, depends on the materials used for its production. Therefore, wind turbine blades are the most studied element of a wind turbine. By selecting the optimal material and geometric properties of the wind turbine blade, it is possible to reduce the costs of making the entire wind turbine. These rationales led the authors to investigate composite wind turbine blades. A two-criteria optimization task was formulated, which allowed for the simultaneous consideration of two criteria: minimizing the mass and minimizing the vertical deflection of the wind turbine blade. Geometric properties of the blade, influencing the considered criteria, were assumed as decision variables. The weighted sum method was used. The results obtained allowed us to determine the optimal geometric and material properties of a wind turbine blade.

4.
Materials (Basel) ; 15(4)2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35208119

ABSTRACT

Waste from large-scale production processes is a growing environmental problem that can potentially be solved by using this waste as fillers in polymeric composites to improve the mechanical and tribological properties of polymeric matrixes. This paper presents research concerning how the introduction of fillers in the form of manganese residue and manganese(II) oxide changes the mechanical and tribological properties of epoxy composites produced by gravity casting. The research was carried out for composites with 2.5 wt.%, 5 wt.%, and 10 wt.% of fillers. Properties such as the density, hardness, resilience, flexural strength, deflection, flexural modulus, tensile strength, elongation at break, and Young's modulus were determined. Moreover, based on the ball-on-plate test, the wear volume and friction coefficients of the tested materials were determined. Microscopic images of the abrasion profiles were also obtained. The geometry of the wear paths was measured with a profilometer, and the results showed that introducing fillers reduced the abrasive wear of the composites; however, in all cases, the fillers decreased the strength of the tested materials.

5.
Materials (Basel) ; 14(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34442982

ABSTRACT

High-tonnage industrial processes generate high amount of waste. This is a growing problem in the whole world. Neutralizing such waste can be time consuming and costly. One of the possibilities of their reuse is to use them as fillers in polymer composites. Introduction of the filler in polymer matrix causes change in its mechanical and tribological properties. In the article, the effect of introducing fillers from post-production waste, and its effect on changing the physical properties of silicone-based composites filled with manganese (II) oxide and waste manganese residue was investigated. The composites were made by gravity casting. Composites with 2.5, 5, 7.5, and 10 wt% of the fillers were examined. The composite materials were subjected to tests such as: density, hardness, resilience, tensile test, abrasion resistance, and ball-on-disc. Microscopic images showed that, the particles of the fillers are uniformly distributed in silicone matrix with the formation of smaller agglomerates. Such agglomerates introduced a discontinuity in the structure of the polymer material, which caused a decrease in the tensile strength and elongation at break for all tested compositions in comparison with the mechanical properties of the silicone used as the matrix. However, it was found that all silicone-based composites filled with manganese (II) oxide and manganese residue showed a reduction in abrasive wear, compared to the reference sample.

6.
Materials (Basel) ; 14(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209626

ABSTRACT

Halloysite nanotube (HNT) additions to the thermoplastic polyurethane (TPU) system were thoroughly evaluated in this study. The resultant composites have been designed for future personalized intervertebral disc implant applications, which requires additional technology to obtain the appropriate geometry unique to each patient. These requirements can be fulfilled using 3D printing. In this work, a technology was developed to produce filaments for fused deposition modeling (FDM). Nanocomposites were prepared using variable HNT content (1, 2, and 3 wt.%). The nanostructure of the resultant composites was confirmed using scanning transmission electron microscopy (STEM). Mechanical tests were used to measure the tensile modulus, stress, and elongation the composites and TPU matrix. Nanocomposites with 2% HNT content were able to withstand 26% increased stress and 50% increased elongation compared to pure TPU before fracturing in addition to a 13% reduction in the friction coefficient. A MTT cytotoxicity assay confirmed the cytotoxicity of all tested materials against human epidermal keratinocyte cells (HaCaT).

7.
Materials (Basel) ; 14(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064115

ABSTRACT

As part of the experiments herein, the mechanical properties of specimens made of poly-ether-ether-ketone (PEEK) material using 3D printing technology were determined. Two populations of specimens were investigated, the first of which contained an amorphous structure, while the other held a crystal structure. The studies also investigated the influence of the print directionality on the mechanical properties obtained. Static tensile, three-point bending, and impact tests were carried out. The results for the effect of the structure type on the tensile properties showed that the modulus of elasticity was approximately 20% higher for the crystal than for the amorphous PEEK form. The Poisson's ratios were similar, but the ratio was slightly higher for the amorphous samples than the crystalline ones. Furthermore, the studies included a chemical PEEK modification to increase the hydrophilicity. For this purpose, nitrite and hydroxyl groups were introduced into the chain by chemical reactions. The results demonstrate that the modified PEEK specimens had worse thermoplastic properties than the unmodified specimens.

8.
Polymers (Basel) ; 13(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808423

ABSTRACT

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood-plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers' impact (ground coffee waste (GCW), walnut shell (WS), brewers' spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material's properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler's type, chemical composition, and grain size on the obtained materials' properties and shed light on the possibility of acquiring ecological silicone-based materials.

9.
Polymers (Basel) ; 13(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672066

ABSTRACT

Silicones are often used for various types of coatings, but due to their poor mechanical properties, they often require modification to meet specific requirements. At the same time, various production processes throughout the world generate different types of waste, the disposal of which is harmful to the environment. One possible solution is to use production waste as a filler. In this paper, the authors investigated how the use of metallurgical production waste products as fillers changed the mechanical properties of silicone composites prepared by casting. Composite samples were characterized using tensile tests, resilience, pin-on-disc, Schopper-Schlobach abrasion, hardness, and density measurements. Based on the obtained results, the authors assessed the effect of each of the fillers used in different weight proportions. The results showed that the silicone composite filled with 5 wt% zinc dust showed the lowest decrease in tensile strength and Young's modulus, with a simultaneous significant reduction in abrasion compared with the reference sample. This research shows that zinc waste can be successfully introduced into a silicone matrix in cases where it is important to reduce abrasive wear.

10.
Polymers (Basel) ; 13(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375118

ABSTRACT

The impact of wood waste on the mechanical and biological properties of silicone-based composites was investigated using wood waste from oak, hornbeam, beech, and spruce trees. The density, abrasion resistance, resilience, hardness, and static tensile properties of the obtained WPC (wood-plastic composites) were tested. The results revealed slight changes in the density, increased abrasion resistance, decreased resilience, increased hardness, and decreased strain at break and stress at break compared with untreated silicone. The samples also showed no cytotoxicity to normal human dermal fibroblast, NHDF. The possibility of using prepared composites as materials to create structures on the seabed was also investigated by placing samples in a marine aquarium for one week and then observing sea algae growth.

11.
Eur J Pharmacol ; 885: 173501, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32866502

ABSTRACT

The synthesis and characteristics of functional polyesters with a potential anticancer activity have been described, followed by a post-modification process of biologically active polymers. First, biodegradable functional polysuccinates possessing pendant allyl groups, that are susceptible to thiol-ene reaction, were obtained by polyaddition of succinic anhydride and allyl glycidyl ether. The functionality of such polyesters was regulated by replacing a part of unsaturated glycidyl ether with saturated ones. Polymers containing 20-100% mers with allyl groups were reacted with N-acetyl-cysteine (NAC). The use of simple click reaction allowed obtaining polyesters containing different amounts of N-acetyl-cysteine in side chains. The thus obtained polymers with a molecular weight of several thousand are characterized by solubility in methanol as opposed to their initial precursors. Modified polyesters show no toxicity to normal human keratinocytes (HaCaT) cells, similar to the NAC in normal human fibroblasts (NHDF), whereas the anticancer activities were observed against squamous carcinoma (SCC-25), and melanoma (Me45) cells. A standard colorimetric assay (MTS), to assessing cells viability and cytotoxicity of tested compounds, was performed against NHDF for NAC, HaCaT, SCC-25, and Me45 cells, within 24-144 h long-term expositions. Neither contact with NAC alone, and tested materials, nor long incubation decreased normal cell viability or induced inflammation. That reassumed the potential of anticancer activities of tested materials, with the tendency to visible selectivity against cancer cell lines in vitro, confirmed with live microscopic imaging against the Me45 cell line.


Subject(s)
Acetylcysteine/pharmacology , Antineoplastic Agents/pharmacology , Succinates/pharmacology , Acetylcysteine/chemistry , Antineoplastic Agents/chemistry , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Fibroblasts/drug effects , Humans , Keratinocytes/drug effects , Polyesters/chemical synthesis , Polyesters/pharmacology , Reactive Oxygen Species , Structure-Activity Relationship , Succinates/chemistry
12.
PLoS One ; 12(5): e0178133, 2017.
Article in English | MEDLINE | ID: mdl-28542633

ABSTRACT

Piston-stapedotomy is the most common method for hearing restoration in patients with otosclerosis. In this study, we have experimentally examined a prototype of a new chamber stapes prosthesis. The prototype was implanted in a human cadaver temporal bone. The round window vibrations before and after implantation were measured for the acoustic signal (90 dB SPL, 0.8-8 kHz) in the external auditory canal. In comparison with a 0.4-mm piston prosthesis, the chamber prosthesis induced significantly higher vibration of the round window, especially for frequencies above 1.5 kHz. Based on the results, it can be surmised that stapedotomy with a chamber stapes prosthesis could provide better hearing results in comparison with the piston-stapedotomy.


Subject(s)
Ossicular Prosthesis , Acoustic Stimulation , Cadaver , Equipment Design , Humans , Lactones , Otosclerosis/physiopathology , Otosclerosis/surgery , Round Window, Ear/physiopathology , Round Window, Ear/surgery , Stapes Surgery/instrumentation , Stapes Surgery/methods , Temporal Bone/physiopathology , Temporal Bone/surgery
13.
PLoS One ; 11(12): e0166618, 2016.
Article in English | MEDLINE | ID: mdl-27941975

ABSTRACT

POU3F4 mutations (DFNX2) are the most prevalent among non-syndromic X-linked hearing loss (HL) identified to date. Clinical manifestations of DFNX2 usually comprise congenital HL either sensorineural or mixed, a tendency towards perilymphatic gusher during otologic surgery and temporal bone malformations. The aim of the present study was to screen for POU3F4 mutations in a group of 30 subjects with a suggestive clinical phenotype as well as a group (N = 1671-2018) of unselected hearing loss patients. We also planned to analyze audiological and radiological features in patients with HL caused by POU3F4 defects. The molecular techniques used to detect POU3F4 mutations included whole exome sequencing (WES), Sanger sequencing and real-time polymerase chain reaction. Hearing status was assessed with pure-tone audiometry and auditory brainstem response. Computer tomography scans were evaluated to define the pattern of structural changes in the temporal bones. Six novel (p.Gln27*, p.Glu187*, p.Leu217*, p.Gln275*, p.Gln306*, p.Val324Asp) and two known (p.Ala116fs141*, p.Leu208*) POU3F4 mutations were detected in the studied cohort. All probands with POU3F4 defects suffered from bilateral, prelingual, severe to profound HL. Morphological changes of the temporal bone in these patients presented a similar pattern, including malformations of the internal auditory canal, vestibular aqueduct, modiolus and vestibule. Despite different localization in the POU3F4 gene all mutations severely impair the protein structure affecting at least one functional POU3F4 domain, and results in similar and severe clinical manifestations. Sequencing of the entire POU3F4 gene is recommended in patients with characteristic temporal bone malformations. Results of POU3F4 mutation testing are important not only for a proper genetic counseling, but also for adequate preparation and conduction of a surgical procedure.


Subject(s)
Hearing Loss/diagnosis , Hearing Loss/genetics , Mutation , POU Domain Factors/genetics , Phenotype , Tomography, X-Ray Computed , Amino Acid Substitution , Audiometry, Pure-Tone , Codon , DNA Mutational Analysis , Exome , Female , Genes, X-Linked , Genetic Association Studies , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree , Temporal Bone/diagnostic imaging , Temporal Bone/pathology
14.
Eur Arch Otorhinolaryngol ; 271(3): 477-82, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23512431

ABSTRACT

The objective of this study was to present 5 years of surgical experience, and the extended results of hearing preservation (based on 3-year follow-up), with the Med-El Vibrant Soundbridge (VSB) in which the floating mass transducer (FMT) is placed directly against the round window membrane, and the fascia is used only as covering tissue to keep it in position. A retrospective survey of surgical and audiological data was conducted to evaluate the performance and stability of patient hearing, with audiometric measurements performed over fixed time intervals up to 36 months. 21 patients, aged 19-62 years (mean 48.4), with mixed or conductive, bilateral or unilateral hearing loss were included in this study. Surgical intervention involved monaural implantation of the Med-El VSB between 2006 and 2009. The results were assessed using pure tone audiometry. In 5 years of experience with the technique, no significant complications or device extrusion were observed except for two revision surgeries requiring FMT repositioning. In the 3-year follow-up, we observed stable hearing in the implanted ear. It is concluded that direct round window stimulation without interposed fascia is an alternative for patients with hearing impairment caused by chronic otitis media and/or lack of ossicles, especially after modified radical mastoidectomy. It allows good results in a selected group of patients, although further observation on a larger population is needed to confirm long-term validity and effectiveness.


Subject(s)
Cochlear Implants , Hearing Loss, Conductive/surgery , Hearing Loss, Mixed Conductive-Sensorineural/surgery , Otitis Media, Suppurative/surgery , Otologic Surgical Procedures/methods , Round Window, Ear , Adult , Audiometry, Pure-Tone , Chronic Disease , Cohort Studies , Female , Hearing Loss, Conductive/etiology , Hearing Loss, Mixed Conductive-Sensorineural/etiology , Humans , Male , Middle Aged , Otitis Media, Suppurative/complications , Retrospective Studies , Treatment Outcome , Young Adult
15.
Biomech Model Mechanobiol ; 12(6): 1243-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23462937

ABSTRACT

Piston stapes prostheses are implanted in patients with refractory conductive or mixed hearing loss due to stapes otosclerosis to stimulate the perilymph with varying degrees of success. The overclosure effect described by the majority of researchers affects mainly low and medium frequencies, and a large number of patients report a lack of satisfactory results for frequencies above 2 kHz. The mechanics of perilymph stimulation with the piston have not been studied in a systematic manner. The objective of this study was to assess the influence of stapedotomy surgery on round window membrane vibration and to estimate the postoperative outcomes using the finite element (FE) method. The study hypothesis is that the three-dimensional FE model developed of the human inner ear, which simulates the round window (RW) membrane vibration, can be used to assess the influence of stapedotomy on auditory outcomes achieved after the surgical procedure. An additional objective of the study was to enable the simulation of RW membrane vibration after stapedotomy using a new type of stapes prosthesis currently under investigation at Warsaw University of Technology. A three-dimensional finite element (FE) model of the human inner ear was developed and validated using experimental data. The model was then used to simulate the round window membrane vibration before and after stapedotomy surgery. Functional alterations of the RW membrane vibration were derived from the model and compared with the results of experimental measurements from temporal bones of a human cadaver. Piston stapes prosthesis implantation causes an approximately fivefold (14 dB) lower amplitude of the RW membrane vibrations compared with normal anatomical conditions. A satisfactory agreement between the FE model and the experimental data was found. The new prosthesis caused an increase of 20-30 dB in the RW displacement amplitude compared with the 0.4-mm piston prosthesis. In all frequencies, the FE model predicted a RW displacement curve that was above the experimental curves for the normal ear. The stapedotomy can be well simulated by the FE model to predict the auditory outcomes achieved following this otosurgery procedure. The 3D FE model developed in this study may be used to optimize the geometry of a new type of stapes prosthesis in order to achieve a similar sound transmission through the inner ear as for a normal middle ear. This should provide better auditory outcomes for patients with stapedial otosclerosis.


Subject(s)
Finite Element Analysis , Round Window, Ear/physiology , Round Window, Ear/surgery , Stapes Surgery , Vibration , Adolescent , Adult , Humans , Models, Biological , Ossicular Prosthesis , Reproducibility of Results , Temporal Bone/physiology , Temporal Bone/surgery
16.
Acta Bioeng Biomech ; 14(2): 67-73, 2012.
Article in English | MEDLINE | ID: mdl-22793978

ABSTRACT

A stapedotomy surgery using a piston stapes prosthesis significantly modifies the perilymph fluid stimulation level and always leads to alteration of conditions in sound transmission through the cochlea. This paper shows the results of non-contact measurements of the stapes head velocity, a Teflon piston stapes prosthesis velocity and round window velocity conducted in freshly harvested human cadaver temporal bone specimens. The vibration patterns were measured within the frequency range of 0.4-10 kHz at the sound pressure level of 90 dB administered to the external auditory canal in the same specimen before and after experimental stapedotomy. It was shown that the vibrations of the stapes Teflon piston prosthesis and the physiological stapes are similar and approximately five-fold lower amplitude of the round window membrane vibrations compared to a physiologic situation is caused by piston shape of the stapes prosthesis. The results in this report are the part of a larger study designed to develop a new type of chamber stapes or whole middle ear prosthesis.


Subject(s)
Perilymph/physiology , Stapes Surgery , Stapes/physiology , Humans , Imaging, Three-Dimensional , Round Window, Ear , Tympanic Membrane
17.
Acta Bioeng Biomech ; 13(3): 27-33, 2011.
Article in English | MEDLINE | ID: mdl-22098054

ABSTRACT

This paper presents the results of non-contact measurements of the human ear round window (RW) membrane motion in freshly harvested human cadaver temporal bone specimens. A PSV 400 Scanning Laser Vibrometer system (Polytec, Waldbronn, Germany) was used to determine the effect of stapedotomy on the sound-induced displacement amplitude of the RW membrane. The vibration patterns were measured in the frequency range of 0.4-10 kHz in four specimens with air conduction stimulation at 90 dB SPL applied to the external auditory canal. It was shown that the vibration amplitude of the RW membrane after stapes piston prosthesis implantation, in comparison with a physiological specimen, was reduced several times. The motion of the RW membrane can be used to determine the cochlear stimulation for the evaluation of middle ear ossicle reconstruction, especially in the case of otosclerosis surgery.


Subject(s)
Motion , Round Window, Ear/physiology , Stapes Surgery , Humans , Temporal Bone/physiology , Vibration
18.
Laryngoscope ; 121(9): 1958-64, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22024852

ABSTRACT

BACKGROUND: Surgical intervention within the area of the middle ear always leads to alteration of conditions in its biomechanical system. This fact may provide an explanation for the lack of expected auditory outcome, although an apparently good anatomic outcome was obtained. In the case of stapedotomy, the majority of patients report lack of satisfactory results for frequencies above 2,000 Hz. The effect has not been experimentally investigated yet. METHODS: This study, conducted in four human temporal bones, yielded a record of round-window membrane vibration amplitude and phase in the frequency function (400 Hz-10 kHz) at the sound intensity level of 90 dB administered to the external auditory canal in a physiologic condition and following implantation of a Teflon piston stapes prosthesis. The procedure of experimental stapedotomy was performed with the tympanic membrane preserved from the maximally dilated approach through the posterior tympanotomy. RESULTS: Stapes Teflon piston prosthesis implantation was found to cause approximately fivefold lower amplitude of round-window membrane vibrations compared to a physiologic situation for frequencies above 2 kHz in particular. CONCLUSIONS: After stapedotomy, with the use of a Teflon piston prosthesis, stimulation of inner ear structures diminishes, especially in higher frequencies.


Subject(s)
Prosthesis Implantation/methods , Round Window, Ear/physiology , Stapes Surgery/instrumentation , Stapes/physiology , Adolescent , Adult , Biomechanical Phenomena , Cadaver , Female , Humans , Male , Ossicular Prosthesis , Polytetrafluoroethylene , Temporal Bone , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...