Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 11812, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678195

ABSTRACT

High resolution Brillouin spectroscopy was used for the first time to study the dispersion and anisotropy of surface phonons in the single crystal of topological insulator Bi2Te3. Two surface acoustic waves have been observed, which distinguishes this material from other metals or nontransparent materials. The modes were assigned as Rayleigh waves. The obtained results were then simulated by Finite Element Method. The layered structure of the unit cell proposed in simulation reproduced quite well experimental results of the modes dispersion and anisotropy.

2.
Sci Rep ; 9(1): 6147, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30992498

ABSTRACT

A pressing challenge in engineering devices with topological insulators (TIs) is that electron transport is dominated by the bulk conductance, and so dissipationless surface states account for only a small fraction of the conductance. Enhancing the surface-to-volume ratio is a common method to enhance the relative contribution of such states. In thin films with reduced thickness, the confinement results in symmetry-breaking and is critical for the experimental observation of topologically protected surface states. We employ micro-Raman and tip-enhanced Raman spectroscopy to examine three different mechanisms of symmetry breaking in Bi2Te3 TI thin films: surface plasmon generation, charge transfer, and application of a periodic strain potential. These mechanisms are facilitated by semiconducting and insulating substrates that modify the electronic and mechanical conditions at the sample surface and alter the long-range interactions between Bi2Te3 and the substrate. We confirm the symmetry breaking in Bi2Te3 via the emergence of the Raman-forbidden [Formula: see text] mode. Our results suggest that topological surface states can exist at the Bi2Te3/substrate interface, which is in a good agreement with previous theoretical results predicting the tunability of the vertical location of helical surface states in TI/substrate heterostructures.

3.
Sci Rep ; 7(1): 11800, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924152

ABSTRACT

Gd2(MoO4)3 (GMO) is a well-studied multiferroic material that exhibits full ferroelectric and ferroelastic behavior at room temperature. However, its difficult stabilization in thin films has prevented the study and exploitation of its multiferroic properties in different architectures. Here, we report on the study of GMO thin films deposited on Si(001) substrates by Pulsed Laser Deposition (PLD). The physicochemical properties of the films are discussed and studied. Results obtained by X-ray diffraction, X-ray photoelectron spectroscopy, high resolution transmission microscopy and second harmonic generation show that the orthorhombic (ß'-GMO) multiferroic phase can be stabilized and homogenized by post deposition thermal reconstruction. Finally, the reconstruction process takes place via a complex surface mechanism with a clear leaf-like behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...