Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 123(51): 12817-25, 2001 Dec 26.
Article in English | MEDLINE | ID: mdl-11749539

ABSTRACT

Detailed intramolecular vibrational spectra obtained by means of surface-enhanced Raman scattering (SERS) for benzonitrile adsorbed on seven electrode surfaces-four Pt-group metals (platinum, palladium, rhodium, and iridium) and the Group IB metals (copper, silver, and gold)-are reported with the aim of exploring the metal-dependent nature of surface-chemisorbate interactions. The Pt-group surfaces were prepared as ultrathin electrodeposited films on gold, enabling the SERS activity inherent to the substrate to be imparted to the overlayer material. Benzonitrile was selected as a "model" organic adsorbate since it displays a rich array of coupled aromatic ring as well as substituent modes which collectively can provide insight into the various molecular perturbations induced by surface coordination via the nitrile substituent. The experimental spectra are compared with ab initio calculations of vibrational frequencies, bond geometries, and charge distributions obtained by means of Density Functional Theory (DFT), which yields valuable insight into the underlying structural reasons for the sensitivity of the experimental coordination-induced frequency shifts to the nature of the intramolecular mode and the metal surface. The DFT results also form an invaluable aid in making SER spectral assignments, along with providing detailed information on the coupled atomic displacements involved in each vibrational mode. Benzonitrile surface coordination was modeled in the DFT calculations by binding the nitrile group to metal atoms and small metal clusters. While the majority of the aromatic-ring SER frequencies are altered only slightly (approximately < 5 cm(-1)) upon surface coordination, several modes (especially nu(1), nu(6a)) are blue-shifted substantially (by up to 50 cm(-1)). These shifts were identified by DFT as arising from mode coupling to the nitrile substituent, especially involving the C-CN bond that is compressed upon nitrile coordination, associated with metal-adsorbate back-donation. The small (<5 cm(-1)) red-shifts seen for ring vibrations not involving coupled substituent motion apparently arise from increased antibonding aromatic electron density. The metal-dependent frequency shifts seen for these coupled aromatic vibrations as well as for the more localized C-N nitrile stretching mode are consistent with increased back-donation anticipated in the sequence d(10) < d(9) < d(8) within a given Periodic row. Overall, the findings provide a benchmark illustration of the virtues of DFT in interpreting complex vibrational spectra for larger polyatomic adsorbates.

2.
Anal Chem ; 73(24): 5953-60, 2001 Dec 15.
Article in English | MEDLINE | ID: mdl-11791565

ABSTRACT

The preparation of Pt-group metal films on roughened gold electrodes by utilizing spontaneous redox replacement of an underpotential-deposited (upd) copper or lead monolayer with a Pt-group metal cation solute is described. The resulting films display intense surface-enhanced Raman scattering (SERS) for adsorbates bound to the overlayer and free from substrate interferences. This strategy provides a useful alternative, at least for platinum, to the constant-current electrodeposition method commonly utilized to prepare SERS-active Pt-group metal films (Zou, S.; Weaver, M. J. Anal. Chem. 1988, 70. 2387). Similarly to related earlier studies, the film uniformity (specifically, the absence or otherwise of residual Au "pinhole" sites) was tested by employing carbon monoxide, and also ethylene, as "probe" chemisorbates, since they yield vibrational frequencies on Au that are blue-shifted from the corresponding bands for adsorbate bound to Pt-group metal sites. While a single redox replacement of upd Cu with Pt(IV) yielded incomplete surface coverage, as expected, the use of multiple (up to eight) replacement cycles produced Pt films displaying remarkably intense CO vibrational bands as well as apparently "pinhole-free" properties, although such imperfections were detected with the ethylene probe. A single upd Cu replacement with Pt(II), however, yielded a remarkably uniform Pt layer, as indicated by pinhole-free characteristics using both the CO and ethylene probes along with the voltammetric behavior. The use of additional redox replacement cycles yielded marked progressive attenuation in the SERS signals. Comparable, although less optimal, SERS behavior was obtained for Pd films prepared similarly from Pd(II). The value of the strategy for exploring catalytic as well as equilibrium adsorptive chemistry on Pt surfaces is also illustrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...