Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 424(Pt C): 127561, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34736199

ABSTRACT

Proteinaceous materials are promising for membranes due to greater mechanical strength, in-built functionalities, amphiphilicity and high molecular loading capacity. Herein, a novel strategy of functionalization of silk nanofibrils with metal oxyhydroxide and fabrication of ultrafast permeable multi-layered and self-cleaning membrane was demonstrated. Typically, 1.9 µm thick multilayered membrane efficiently purifies macromolecules, dyes, pharmaceutical, surfactants and oil-water emulsion contaminated wastewater with rejection rate > 89% with the flux rate > 883 Lm2h-1. Further, the potential of the multilayered membrane was tested for series of different feed concentrations of fluoride and As (V) to validate the commercial applicability of the multilayered membranes for industry wastewater. Notably, even at higher concentration of 10-30 mgL-1, >96% for fluoride and >87% for As (V) rejection was obtained. Furthermore, the functionalized multilayered membrane exhibited outstanding performance for fluoride removal in real water streams, where, it purifies approximately 4710 L.m-2 in two consecutive cycles, before the quality of the effluents no longer meets WHO criteria. However, the remarkable separation efficiency principally attributed to adsorption sites on the surface of the membrane. Thus, various regeneration strategies were established based on the nature of pollutants. More importantly, photocatalytic Fenton-like reaction assisted self-cleaning property of the multilayered membrane is demonstrated for regeneration of organic fouled membrane. Overall, the present multilayered membrane exhibits superior performance in purifying organic, inorganic contaminated water and oil-water emulsion with excellent recyclability; hence, envisaged its application for Universal water purification.


Subject(s)
Water Purification , Emulsions , Membranes, Artificial , Wastewater
2.
ACS Appl Bio Mater ; 3(8): 5233-5243, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-35021698

ABSTRACT

The present work demonstrates an innovative strategy for robust water purification using an engineered aerogel membrane fabricated from biopolymers and task-specific Fe-Al-based nanocomposites. The as-prepared ethylenediaminetetraacetate dianhydride cross-linked chitosan- and agarose (7:3 weight ratio)-based aerogel membrane decorated with α-FeOOH- and γ-AlOOH-based nanocomposites was characterized using various analytical tools, which suggested formation of a highly stable network interconnected through covalent and electrostatic interactions. The optimized bionanocomposite-based aerogel (BNC-AG-0.1) membrane showed macroporous and partial unidirectional short-range channels with an ultralow density of 0.021 g·m-2, a high swelling ratio of 1974%, and a remarkable pure water flux of 19,228 L·m-2·h-1 (>6-fold higher flux compared to the reported aerogel membranes). The aerogel membranes were successfully utilized for purification of diverse pollutants such as dyes, emerging pollutants (EPs), arsenate, and fluoride in a continuous flow method under gravitational force. The BNC-AG-0.1 membrane exhibits high rejection (95-98.6%) for both cationic and anionic dyes with a flux rate of 1150-1375 L·m-2·h-1 and a rejection of 89-92% for EPs with a flux rate of 1098-1165 L·m-2·h-1. Moreover, the BNC-AG-0.1 membrane showed a qmax of 102.45 mg·g-1 (at pH 6.5) for As(V) with >93% rejection at a flow rate of 1000 L·m-2·h-1. Furthermore, the aerogel membrane showed an excellent removal efficiency (92%) of arsenic up to the 10th cycle and hence demonstrated as a potential adsorption-based membrane for arsenic-free potable water. On the other hand, the BNC-AG-0.1 membrane showed a qmax of 81.56 mg·g-1 (at pH 6.5) for F- removal with >99% rejection at a flow rate of 250 L·m-2·h-1. When applied for real-water purification, approximately 4734 L of safe drinking water (the F- concentration is less than the WHO permissible limit) per square meter of the aerogel membrane can be obtained with a flux rate of 250 L·m-2·h-1. Overall, the prepared aerogel membrane showed robust removal of a variety of contaminants with ultrafast water permeation and established excellent recyclability.

SELECTION OF CITATIONS
SEARCH DETAIL
...