Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 149(5): 054101, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30089378

ABSTRACT

Velocity autocorrelation functions (VAFs) of the fluids are studied on short- and long-time scales within a unified approach. This approach is based on an effective summation of the infinite continued fraction at a reasonable assumption about convergence of relaxation times of the high order memory functions, which have a purely kinetic origin. The VAFs obtained within our method are compared with computer simulation data for the liquid Ne at different densities and the results, which follow from the Markovian approximation for the highest order kinetic kernels. It is shown that in all the thermodynamic points and at the chosen level of the hierarchy, our results agree much better with the molecular dynamic data than those of the Markovian approximation. The density dependence of the transition time, needed for the fluid to attain the hydrodynamic stage of evolution, is evaluated. The common and distinctive features of our method are discussed in their relations to the generalized collective mode theory, the mode coupling theory, and some other theoretical approaches.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021202, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19792112

ABSTRACT

Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio mu, including the limiting case mu = infinity, for different mole fractions x. Within a large range of x and mu the product of the diffusion coefficient of the heavy species D(2) and the total shear viscosity of the mixture eta(m) is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 011123, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19257017

ABSTRACT

An integral-equation approach is developed to study interfacial properties of anisotropic fluids with planar spins in the presence of an external magnetic field. The approach is based on the coupled set of the Lovett-Mou-Buff-Wertheim integro-differential equation for the inhomogeneous anisotropic one-particle density and the Ornstein-Zernike equation for the orientationally dependent two-particle correlation functions. Using the proposed inhomogeneous angle-harmonics expansion formalism we show that these integral equations can be reduced to a much simpler form similar to that inherent for a system of isotropic fluids. The interfacial orientationally dependent direct correlation function can be consistently constructed by means of a nonlinear interpolation via its values obtained in the coexisting anisotropic bulk phases. A soft mean spherical approximation is employed for the closure relation. This has allowed us to solve the complicated integral equations in the situation when both spatial inhomogeneity and orientational anisotropy are present simultaneously. The approach introduced is applied to an XY fluid model with ferromagnetic spin interactions. As a result, the density-orientation and magnetization profiles at the liquid-vapor interfaces are calculated in a wide range of temperatures up to subcritical regions. The influence of the external field on the microscopic structure of the interfaces and the surface tension is also analyzed in detail.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061504, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17677266

ABSTRACT

Using Monte Carlo simulation techniques, we study the ferromagnetic order-disorder phase transition in Ising spin fluids with hard-core Yukawa interaction truncated at various cutoff radii r{c}. We focus our interest on the dependence of critical quantities such as the Binder cumulant and various exponent ratios on the value of r{c}, and on the question whether the Fisher-renormalized exponents expected for such systems can be observed in the simulations. It turns out that the corrections to scaling decaying with a rather small exponent prevent reaching the asymptotic region with the computational power available. Thus, we observe only effective exponents, with different (nonuniversal) values depending on the cutoff radius. The same behavior is also found for the critical Binder cumulant. Nevertheless, an exact investigation of the effective susceptibility exponent gamma{eff} as a function of temperature seems to point towards a Fisher-renormalized value. For two selected cutoff radii, the critical temperature is determined more accurately using, in addition to the cumulant crossing technique, the scanning technique and the shifting technique, taking into account corrections to scaling. Simulations of Ising fluids with constant cutoff radius and varying Yukawa-tail screening lengths lambda also show a nonuniversal dependence of U{c} on lambda. Finally, we have performed simulations of the Ising lattice model with increasing number of couplings which show the expected asymptotic behavior, independent of the range of interactions.

5.
J Chem Phys ; 126(12): 124702, 2007 Mar 28.
Article in English | MEDLINE | ID: mdl-17411147

ABSTRACT

The microscopic structure and thermodynamic properties of liquid-vapor and liquid-liquid interfaces in Ising fluids are studied using an integral equation approach. The calculations are performed in the absence and presence of an external magnetic field by solving the corresponding set of Lovett-Mou-Buff-Wertheim integrodifferential equations for the one-particle density distribution functions. The two-particle inhomogeneous direct correlation functions are consistently constructed by nonlinear interpolation between the bulk ones. The bulk correlation functions of the coexisting phases are obtained from the Ornstein-Zernike equations with a modified soft mean spherical approximation for the closure relation. As a result, the density and magnetization profiles at liquid-vapor and liquid-liquid interfaces as well as the surface tension and adsorption coefficients are evaluated in a wide temperature range including subcritical regions. The influence of an external magnetic field on the liquid-vapor interfaces is also considered.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 1): 031506, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16241443

ABSTRACT

We develop an integral equation approach to study anisotropic fluids with planar spins in the presence of an external field. As a result, the integral equation calculations for these systems appear to be no more difficult than those for ordinary isotropic liquids. The method presented is applied to the investigation of phase coexistence properties of ferromagnetic XY-spin fluids in a magnetic field. The soft mean spherical approximation is used for the closure relation connecting the orientationally dependent two-particle direct and total correlation functions. The Lovett-Mou-Buff-Wertheim and Born-Green-Yvon equations are employed to describe the one-particle orientational distribution. The phase diagrams are obtained in the whole range of varying the external field for a wide class of XY-spin fluid models with various ratios of the strengths of magnetic to nonmagnetic Yukawa-like interactions. The influence of changing the screening radii of the interaction potentials is also considered. Different types of the phase diagram topology are identified. They are characterized by the existence of critical, tricritical, critical end, and triple points related to transitions between gas, liquid, and para- and ferromagnetic states, accompanied by different external field dependencies of critical temperatures and densities corresponding to the gas-liquid and liquid-liquid transitions. As is demonstrated, the integral equation approach leads to accurate predictions of the complicated phase diagram behavior which coincide well with those evaluated by the cumbersome Gibbs ensemble simulation and multiple-histogram reweighting techniques.

7.
Phys Rev Lett ; 94(4): 045701, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15783572

ABSTRACT

A method of integral equations is developed to study anisotropic fluids with planar spins in an external field. As a result, the calculations for these systems appear to be no more difficult than those for ordinary homogeneous liquids. The approach proposed is applied to the ferromagnetic XY spin fluid in a magnetic field using a soft mean spherical closure and the Born-Green-Yvon equation. This provides an accurate reproduction of the complicated phase diagram behavior obtained by cumbersome Gibbs ensemble simulation and multiple histogram reweighting techniques.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 1): 061506, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15244575

ABSTRACT

The phase behavior of Ising spin fluids is studied in the presence of an external magnetic field with the integral equation method. The calculations are performed on the basis of a soft mean spherical approximation using an efficient algorithm for solving the coupled set of the Ornstein-Zernike equations, the closure relations, and the external field constraint. The phase diagrams are obtained in the whole thermodynamic space including the magnetic field H for a wide class of Ising fluid models with various ratios R of the strengths of magnetic to nonmagnetic Yukawa-like interactions. The influence of varying the inverse screening lengths z(1) and z(2), corresponding to the magnetic and nonmagnetic Yukawa parts of the potential, is investigated too. It is shown that changes in R as well as in z(1) and z(2) can lead to different topologies of the phase diagrams. In particular, depending on the value of R, the critical temperature of the liquid-gas transition either decreases monotonically, behaves nonmonotonically, or increases monotonically with increasing H. The para-ferro magnetic transition is also affected by changes in R and the screening lengths. At H=0, the Ising fluid maps onto a simple model of a symmetric nonmagnetic binary mixture. For H--> infinity, it reduces to a pure nonmagnetic fluid. The results are compared with available simulations and the predictions of other theoretical methods. It is demonstrated that the mean spherical approximation appears to be more accurate compared with mean field theory, especially for systems with short ranged attraction potentials (when z(1) and z(2) are large). In the Kac limit z(1), z(2) -->+0, both approaches tend to nearly the same results.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(6 Pt 1): 061510, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14754215

ABSTRACT

The influence of an external magnetic field on the liquid-gas phase transition in Ising, XY, and Heisenberg spin fluid models is studied using a modified mean field theory and Gibbs ensemble Monte Carlo simulations. It is demonstrated that the theory is able to reproduce quantitatively all characteristic features of the field dependence of the critical temperature T(c)(H) for all the three models. These features include a monotonic decrease of T(c) with rising H in the case of the Ising fluid as well as a more complicated nonmonotonic behavior for the XY and Heisenberg models. The nonmonotonicity consists in a decrease of T(c) with increasing H at weak external fields, an increase of T(c) with rising H in the strong field regime, and the existence of a minimum in T(c)(H) at intermediate values of H. Analytical expressions for T(c)(H) in the large field limit are presented as well. The paramagnetic-ferromagnetic phase transition is also considered in simulations and described within the mean field theory.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 026701, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12241312

ABSTRACT

A consequent approach is proposed to construct symplectic force-gradient algorithms of arbitrarily high orders in the time step for precise integration of motion in classical and quantum mechanics simulations. Within this approach the basic algorithms are first derived up to the eighth order by direct decompositions of exponential propagators and further collected using an advanced composition scheme to obtain the algorithms of higher orders. Contrary to the scheme proposed by Chin and Kidwell [Phys. Rev. E 62, 8746 (2000)], where high-order algorithms are introduced by standard iterations of a force-gradient integrator of order four, the present method allows one to reduce the total number of expensive force and its gradient evaluations to a minimum. At the same time, the precision of the integration increases significantly, especially with increasing the order of the generated schemes. The algorithms are tested in molecular dynamics and celestial mechanics simulations. It is shown, in particular, that the efficiency of the advanced fourth-order-based algorithms is better approximately in factors 5 to 1000 for orders 4 to 12, respectively. The results corresponding to sixth- and eighth-order-based composition schemes are also presented up to the sixteenth order. For orders 14 and 16, such highly precise schemes, at considerably smaller computational costs, allow to reduce unphysical deviations in the total energy up in 100 000 times with respect to those of the standard fourth-order-based iteration approach.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 2): 056706, 2002 May.
Article in English | MEDLINE | ID: mdl-12059749

ABSTRACT

Explicit velocity- and position-Verlet-like algorithms of the second order are proposed to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an extended decomposition scheme at the presence of a free parameter. The nonzero value for this parameter is obtained by reducing the influence of truncated terms to a minimum. As a result, the proposed algorithms appear to be more efficient than the original Verlet versions that correspond to a particular case when the introduced parameter is equal to zero. Like the original versions, the extended counterparts are symplectic and time reversible, but lead to an improved accuracy in the generated solutions at the same overall computational costs. The advantages of the optimized algorithms are demonstrated in molecular dynamics simulations of a Lennard-Jones fluid.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(1 Pt 2): 016105, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11461329

ABSTRACT

A methodology is developed to integrate numerically the equations of motion for classical many-body systems in molecular dynamics simulations. Its distinguishable feature is the possibility to preserve, independently on the size of the time step, all the conservation laws inherent in the description without breaking the time reversibility. As a result, an implicit second-order algorithm is derived and applied to pure liquids, as well as spin liquids, for which the dynamics is characterized by the conservation of total energy, linear and angular momenta, as well as magnetization and individual spin lengths. It is demonstrated on the basis of Lennard-Jones and Heisenberg fluid models that when such quantities as energy and magnetization must be conserved perfectly, the algorithm turns out to be more efficient than popular decomposition integrators and standard predictor-corrector schemes.

13.
Phys Rev Lett ; 86(14): 3156-9, 2001 Apr 02.
Article in English | MEDLINE | ID: mdl-11290131

ABSTRACT

The magnetic phase transition in a Heisenberg fluid is studied by means of the finite size scaling technique. We find that even for larger systems, considered in an ensemble with fixed density, the critical exponents show deviations from the expected lattice values similar to those obtained previously. This puzzle is clarified by proving the importance of the leading correction to the scaling that appears due to Fisher renormalization with the critical exponent equal to the absolute value of the specific heat exponent alpha. The appearance of such new corretions to scaling is a general feature of systems with constraints.

14.
Phys Rev Lett ; 86(5): 898-901, 2001 Jan 29.
Article in English | MEDLINE | ID: mdl-11177968

ABSTRACT

A new symplectic time-reversible algorithm for numerical integration of the equations of motion in magnetic liquids is proposed. It is tested and applied to molecular dynamics simulations of a Heisenberg spin fluid. We show that the algorithm exactly conserves spin lengths and can be used with much larger time steps than those inherent in standard predictor-corrector schemes. The results obtained for time correlation functions demonstrate the evident dynamic interplay between the liquid and magnetic subsystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...