Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 243: 116076, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38430614

ABSTRACT

Recently we published in this journal an enantioselective high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of 3,4-methylenedioxymethamphetamine (MDMA) and its major phase-1 metabolites, 4-hydroxy-3-methoxyamphetamine (HMA), 4-hydroxy-3-methoxymethamphetamine (HMMA) and 3,4-methylenedioxyamphetamine (MDA) in human plasma, sweat, oral fluid and urine. Since we did not achieve simultaneous enantioseparation of all 4 compounds with a single chiral column, two amylose-based chiral columns were used alternatively. Further optimization of the mobile phase in the present study enabled baseline separation of all four pairs of enantiomers on a single Lux AMP column. In addition, by optimization of the column dimension and applied flow-rate it became possible to complete the separation within 6 minutes. These new methods were applied to the analysis of human plasma, oral fluid and urine. While results on the concentration of MDMA and its metabolites in various biological fluids were reported in our recent publication, in the present study an attempt was made to hydrolyze glucuronides in urine samples by using alternatively, hydrochloric acid or glucuronidase and to evaluate the effect of hydrolysis on the concentration and enantiomeric distribution of hydroxy metabolites of MDMA such as HMA and HMMA.


Subject(s)
3,4-Methylenedioxyamphetamine , Lactates , Methamphetamine , N-Methyl-3,4-methylenedioxyamphetamine , Humans , N-Methyl-3,4-methylenedioxyamphetamine/urine , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Chromatography, Liquid , Stereoisomerism , 3,4-Methylenedioxyamphetamine/urine
2.
J Chromatogr A ; 1571: 132-139, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30098733

ABSTRACT

Our earlier studies have demonstrated the applicability of polysaccharide-based chiral selectors in combination with superficially porous (or core-shell) silica (SPS) particles for the preparation of highly efficient chiral stationary phases (CSP). In earlier studies, CSPs were prepared by coating (adsorption) of the chiral selector onto the surface of silica. In this study we report for the first time the CSP obtained by covalent immobilization of a chiral selector onto the surface of SPS particles. The applicability of this CSP for the separation of enantiomers in pure methanol and acetonitrile, as well as in n-hexane/2-propanol mobile phases is shown. The effect of the injected sample amount, mobile phase flow rate and detection frequency on separation performance were studied, as well as high efficiency separation of enantiomers with the analysis time less than 30 s was attempted.


Subject(s)
Cellulose/chemistry , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Benzamides/chemistry , Polysaccharides/chemistry , Porosity , Stereoisomerism
3.
J Sep Sci ; 35(19): 2529-37, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22893517

ABSTRACT

The separation of enantiomers of five chiral dihydropyridine derivatives was studied on five different polysaccharide-based chiral HPLC columns with various normal-phase (NP), polar organic, and reversed-phase eluents. Along with the successful separation of analyte enantiomers, the emphasis of this study was on enantiomer elution order (EEO) with various columns and mobile phase composition. The interesting phenomenon of reversal of EEO, recently reported in the case of amlodipine (AML) depending on the concentration of formic acid in acetonitrile, was also confirmed with NP eluents. Under RP conditions at relatively low water content, the EEO of AML could also be reverted by varying the concentration of formic acid in the mobile phase. However, at higher water content the same parameter did not affect the EEO, but only induced gradual decrease in resolution up to complete co-elution of enantiomers. Additionally, in organic-aqueous mobile phases retention factors decreased with increasing water content but only up to 20% (v/v), while above this concentration the expected typical RP behavior was observed. The presence of the commonly used additive diethylamine in the mobile phase seems important for observing a reversal in EEO with increasing concentration of formic acid. The reversal of the EEO was characteristic of AML only and was not observed for any of other dihydropyridines included in this study.

SELECTION OF CITATIONS
SEARCH DETAIL
...