Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 12345, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524898

ABSTRACT

Phosphorus (Pi) deficiency is a major factor of limiting plant growth. Using Phosphate-solubilizing microorganism (PSM) in synergy with plant root system which supply soluble Pi to plants is an environmentally friendly and efficient way to utilize Pi. Trichoderma viride (T. viride) is a biocontrol agent which able to solubilize soil nutrients, but little is known about its Pi solubilizing properties. The study used T. viride to inoculate Melilotus officinalis (M. officinalis) under different Pi levels and in order to investigate the effect on Pi absorption and growth of seedlings. The results found that T. viride could not only solubilizate insoluble inorganic Pi but also mineralize insoluble organic Pi. In addition, the ability of mineralization to insoluble organic Pi is more stronger. Under different Pi levels, inoculation of T. viride showed that promoted the growth of aboveground parts of seedlings and regulated the morphology of roots, thus increasing the dry weight of seedlings. The effect of T. viride on seedling growth was also reflected the increasing of chlorophyll fluorescence parameters and photosynthetic pigment content. Moreover, compared to the uninoculated treatments, inoculation of T. viride also enhanced Pi content in seedlings. Thus, the T. viride was a beneficial fungus for synergistic the plant Pi uptake and growth.


Subject(s)
Melilotus , Phosphorus, Dietary , Trichoderma , Phosphorus
2.
Ann Bot ; 132(1): 121-132, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37279964

ABSTRACT

BACKGROUND AND AIMS: Plants can respond to drought by changing their relative investments in the biomass and morphology of each organ. The aims of this study were to quantify the relative contribution of changes in morphology vs. allocation and determine how they affect each other. These results should help us understand the mechanisms that plants use to respond to drought events. METHODS: In a glasshouse experiment, we applied a drought treatment (well-watered vs. drought) at early and late stages of plant growth, leading to four treatment combinations (well-watered in both early and late periods, WW; drought in the early period and well-watered in the late period, DW; well-watered in the early period and drought in the late period, WD; drought in both early and late periods, DD). We used the variance partitioning method to compare the contribution of organ (leaf and root) biomass allocation and morphology to the leaf area ratio, root length ratio and root area ratio, for the rhizomatous grass Leymus chinensis (Trin.) Tzvelev. KEY RESULTS: Compared with the continuously well-watered treatment, the leaf area ratio, root length ratio and root area ratio showed increasing trends under various drought treatments. The contribution of leaf mass allocation to leaf area ratio differed among the drought treatments and was 2.1- to 5.3-fold greater than leaf morphology, and the contribution of root mass allocation to root length ratio was ~2-fold greater than that of root morphology. In contrast, root morphology contributed more to the root area ratio than biomass allocation under drought in both the early and late periods. There was a negative correlation between the ratio of leaf mass fraction to root mass fraction and the ratio of specific leaf area to specific root length (or specific root area). CONCLUSIONS: This study suggested that organ biomass allocation drove a larger proportion of variation than morphological traits for the absorption of resources in this rhizomatous grass. These findings should help us understand the adaptive mechanisms of plants when they are confronted with drought stress.


Subject(s)
Droughts , Water , Phenotype , Rhizome , Plant Leaves/anatomy & histology , Poaceae , Biomass
3.
Plants (Basel) ; 12(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37176839

ABSTRACT

The trade-offs between key functional traits in plants have a decisive impact on biomass production. However, how precipitation and nutrient deposition affect the trade-offs in traits and, ultimately, productivity is still unclear. In the present study, a mesocosm experiment was conducted to explore the relationships between biomass production and the aboveground and belowground key functional traits and their trade-offs under changes in precipitation and nutrient depositions in Leymus chinensis, a monodominant perennial rhizome grass widespread in the eastern Eurasian steppe. Our results showed that moisture is the key factor regulating the effect of nitrogen (N) and phosphorus (P) deposition on increased biomass production. Under conditions of average precipitation, water use efficiency (WUE) was the key trait determining the biomass of L. chinensis. There were obvious trade-offs between WUE and leaf area, specific leaf area, leaf thickness, and leaf dry matter. Conversely, under increasing precipitation, the effect of restricted soil water on leaf traits was relieved; the key limiting trait changed from WUE to plant height. These findings indicate that the shift of fundamental traits of photosynthetic carbon gain induced by precipitation under N and P deposition is the key ecological driving mechanism for the biomass production of typical dominant species in semi-arid grassland.

4.
Plants (Basel) ; 12(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176974

ABSTRACT

To explore differences in the physiological metabolic response mechanisms of grassland perennial plants to different intensities of salt-alkali stress, we employed GC-MS to identify the metabolome of perennial rhizome-saline-tolerant Leymus chinensis (L. chinensis). L. chinensis reduced stress damage by accumulating osmotic solutes during salt-alkali stress, although the types of accumulated solutes varied with stress and concentration gradients. Soluble sugars increased only under mild salt-alkali stress. Under salt and mild alkali stress, amino acids increased. Under severe salt-alkali stress, organic acids increased. Betaine increased as a typical osmolute under salt-alkali stress. Metabolic analysis identified 20 metabolites, including 4 amino acids, 6 sugars, and 10 organic acids. The majority of them increased in response to stress. Under mild salt stress, the metabolites included glycine and proline. Under mild alkali stress, they primarily consisted of sugars such as isomaltose and lactulose, whereas under severe salt-alkali stress, they primarily consisted of organic acids such as citric acid and isocitric acid. Pathway analysis showed that six pathways were affected. Glycine, serine, and threonine metabolism was affected under mild salt stress. Alanine, aspartate, and glutamate metabolism and butanota metabolism were affected under mild alkali stress, while energy metabolism pathways, such as the TCA cycle and glyoxylate and dicarboxylate metabolism, were affected under severe salt-alkali stress. The results indicate the importance of betaine in stress resistance and the significance of organic acid in severe salt stress, and they also demonstrate that energy supply was one of the key mechanisms in response to severe salt-alkali stress.

5.
Plants (Basel) ; 11(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684267

ABSTRACT

To elucidate the physiological and metabolic mechanism of perennial grass responses to alkali stress, we selected Leymus chinensis (L. chinensis), a salt-tolerant perennial rhizomatous species of the family Poaceae as experimental material. We conducted a pot experiment in a greenhouse and measured the biomass, physiological characteristics, metabonomic, and corresponding metabolites. Our results showed that alkali stress significantly inhibited seedling growth and photosynthesis, which caused ion imbalance and carbon deficiency, but the alkali stress significantly increased the nitrogen and ATP contents. The metabolic analysis indicated that alkali stress markedly enhanced the contents of nucleotides, amino acids, and organic acids, but it decreased soluble sugar contents. Pathway enrichment analysis showed that the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, which was related to nitrogen metabolism, was most significantly affected by alkali stress. The contents of glutamine synthetase (GS) and glutamate synthetase (GOGAT) involved in this pathway were also significantly increased. Our results not only verified the important roles of some amino acids and organic acids in resisting alkali stress, but also further proved that nucleotides and the GS/GOGAT cycle related to nitrogen metabolism played critical roles for seedlings in response to alkali stress.

6.
Front Plant Sci ; 13: 870681, 2022.
Article in English | MEDLINE | ID: mdl-35574094

ABSTRACT

The Sharply increasing atmospheric nitrogen (N) deposition may substantially impact the N availability and photosynthetic capacity of terrestrial plants. Determining the trade-off relationship between within-leaf N sources and allocation is therefore critical for understanding the photosynthetic response to nitrogen deposition in grassland ecosystems. We conducted field experiments to examine the effects of inorganic nitrogen addition (sole NH4 +, sole NO3 - and mixed NH4 +/NO3 -: 50%/50%) on N assimilation and allocation by Leymus chinensis. The leaf N allocated to the photosynthetic apparatus (NPSN) and chlorophyll content per unit area (Chlarea) were significantly positively correlated with the photosynthetic N-use efficiency (PNUE). The sole NO3 - treatment significantly increased the plant leaf PNUE and biomass by increasing the photosynthetic N allocation and Chlarea. Under the NO3 treatment, L. chinensis plants devoted more N to their bioenergetics and light-harvesting systems to increase electron transfer. Plants reduced the cell wall N allocation or increased their soluble protein concentrations to balance growth and defense under the NO3 treatment. In the sole NH4 + treatment, however, plants decreased their N allocation to photosynthetic components, but increased their N allocation to the cell wall and elsewhere. Our findings demonstrated that within-leaf N allocation optimization is a key adaptive mechanism by which plants maximize their PNUE and biomass under predicted future global changes.

7.
Glob Chang Biol ; 27(19): 4894-4908, 2021 10.
Article in English | MEDLINE | ID: mdl-34240513

ABSTRACT

Global change factors such as changed rainfall regimes and nitrogen (N) deposition contribute to increases in the emission of the greenhouse gas nitrous oxide (N2 O) from the soil. In previous research, N deposition has often been simulated by using a single or a series of N addition events over the course of a year, but wet N deposition actually co-occurs with rainfall. How soil N2 O emissions respond to altered rainfall amount and frequency, wet N deposition, and their interactions is still not fully understood. We designed a three-factor, fully factorial experiment with factors of rainfall amounts (ambient, -30%) rainfall frequency (ambient, ±50%) and wet N deposition (with/without) co-occurring with rainfall in semi-arid grassland mesocosms, and measured N2 O emissions and their possible biotic and abiotic drivers. Across all treatments, reduced rainfall amount and N deposition increased soil N2 O emissions by 35% and 28%, respectively. A significant interactive effect was observed between rainfall amount and N deposition, and to a lesser extent between rainfall frequency and N deposition. Without N deposition, reduced rainfall amount and altered rainfall frequency indirectly affected soil N2 O emissions by changing the abundance of nirK and soil net N mineralization, and the changes in nirK abundance were indirectly driven by soil N availability rather than directly by soil moisture. With N deposition, both the abundance of nirK and the level of soil water-filled pore space contributed to changes in N2 O emissions in response to altered rainfall regimes, and the changes in the abundance of nirK were indirectly driven by plant N uptake and nitrifier (ammonia-oxidizing bacteria) abundance. Our results imply that unlike wetter grassland ecosystems, reduced precipitation may increase N2 O emissions, and N deposition may only slightly increase N2 O emissions in arid and semi-arid N-limited ecosystems that are dominated by grasses with high soil N uptake capacity.


Subject(s)
Grassland , Soil , Ecosystem , Nitrogen/analysis , Nitrous Oxide/analysis
8.
Ying Yong Sheng Tai Xue Bao ; 32(2): 399-405, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33650348

ABSTRACT

Drought is a crucial factor affecting seed germination and seedling growth of desert plants. In the study, we examined the effects of seed size (large, small) and bract (without bracts, with bracts) on seed germination and seedling growth of Ceratoides arborescens, a perennial super xerophyte semi-shrub, under different drought levels (0, 100, 200, 300 and 400 g·L-1 PEG6000). The results showed that drought stress significantly inhibited seed germination and reduced shoot length of seedlings. Under the 100 and 200 g·L-1 PEG6000 stress conditions, root length of seedlings were significantly increased, whereas it was significantly reduced under the 300 and 400 g·L-1 PEG6000 stress intensities. The presence of bract significantly reduced seed germination percentage by 12%, germination index by 50.5%, and shoot length by 20.8%, but increased root length by 6.3%. Seed size did not affect seed germination index. Compared with small seeds, germination percentage of large seeds was 3% higher, shoot length and root length of seedlings were 20.5% and 33.0% higher, respectively. In summary, seed bract in C. arborescens through delaying seed germination and seed size through influencing the survival of the early state of seedling were the most important strategies to adapt extremely arid environment.


Subject(s)
Chenopodiaceae , Germination , Droughts , Seedlings , Seeds
9.
BMC Plant Biol ; 21(1): 147, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33743593

ABSTRACT

BACKGROUND: Climate change is predicted to lead to changes in the amount and distribution of precipitation during the growing seasonal. This "repackaging" of rainfall could be particularly important for grassland productivity. Here, we designed a two-factor full factorial experiment (three levels of precipitation amount and six levels of dry intervals) to investigate the effect of precipitation patterns on biomass production in Leymus chinensis (Trin.) Tzvel. (a dominant species in the Eastern Eurasian Steppe). RESULTS: Our results showed that increased amounts of rainfall with prolonged dry intervals promoted biomass production in L. chinensis by increasing soil moisture, except for the longest dry interval (21 days). However, prolonged dry intervals with increased amount of precipitation per event decreased the available soil nitrogen content, especially the soil NO3--N content. For small with more frequent rainfall events pattern, L. chinensis biomass decreased due to smaller plant size (plant height) and fewer ramets. Under large quantities of rain falling during a few events, the reduction in biomass was not only affected by decreasing plant individual size and lower ramet number but also by withering of aboveground parts, which resulted from both lower soil water content and lower NO3--N content. CONCLUSION: Our study suggests that prolonged dry intervals between rainfall combined with large precipitation events will dramatically change grassland productivity in the future. For certain combinations of prolonged dry intervals and increased amounts of intervening rainfall, semi-arid grassland productivity may improve. However, this rainfall pattern may accelerate the loss of available soil nitrogen. Under extremely prolonged dry intervals, the periods between precipitation events exceeded the soil moisture recharge interval, the available soil moisture became fully depleted, and plant growth ceased. This implies that changes in the seasonal distribution of rainfall due to climate change could have a major impact on grassland productivity.


Subject(s)
Grassland , Poaceae/growth & development , Rain , Biomass , China , Climate Change
10.
PeerJ ; 6: e4188, 2018.
Article in English | MEDLINE | ID: mdl-29312820

ABSTRACT

Resistance strategies of clonal organs, and parent and offspring shoots of Phragmites australis (common reed) to heavy metal pollution in soils are not well known. To clarify the tolerance or resistance strategies in reeds, we conducted a pot experiment with five levels of Pb concentration (0∼4,500 mg kg-1) in flood and drought conditions. Lead toxicity had no inhibitory effect on the number of offspring shoots in flood environment; however, biomass accumulation, and photosynthetic and clonal growth parameters were inhibited in both water environment. At each treatment of Pb concentration, offspring shoots had greater biomass and higher photosynthesis indicators than parent shoots. The lowest Pb allocation was found in rhizomes. More of the Pb transported to above-ground parts tended to accumulate in parent shoots rather than in offspring shoots. Biomass and photosynthesis of offspring shoots, rhizome length, and the number of buds, rhizomes and offspring shoots in the flooded treatment were significantly greater than those in the drought treatment. Our results indicated that the tolerance strategies used by reeds, including higher biomass accumulation and photosynthesis in offspring shoots, low allocation of Pb in rhizomes and offspring shoots, and stable clonal growth, maintained the stability of population propagation and productivity, improving the resistance of reeds to Pb pollution in flood environment. However, the resistance or tolerance was significantly reduced by the synergistic effect of Pb and drought, which significantly inhibited biomass accumulation, photosynthesis, and clonal growth of reeds.

11.
Ecology ; 98(7): 1779-1786, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28452051

ABSTRACT

Adding nutrients to nutrient-limited ecosystems typically lowers plant diversity and decreases species asynchrony. Both, in turn, decrease the stability of productivity in the response to negative climate fluctuations such as droughts. However, most classic studies examining stability have been done in relatively wet grasslands dominated by perennial grasses. We examined how nutrient additions influence the stability of productivity to rainfall variability in an arid grassland with a mix of perennial and annual species. Of the nutrients, only nitrogen increased productivity, and only in wet years. In addition, only nitrogen decreased the stability of productivity. Thus, nutrient addition makes ecosystem productivity less stable in both wet and arid grasslands. However, the mechanism is very different. In contrast to wet grasslands, adding nitrogen to an arid grassland did not decrease diversity. Rather, stability decreased with nitrogen addition due to an increase in annual species that increased productivity. In other words, in our arid grassland, nitrogen addition decreased ecosystem stability because of increased ecosystem responsiveness to positive climate fluctuations. These climate fluctuations were facilitated by annual species that take advantage of wet years and can escape dry years as seeds. Our data support the conclusion that nutrient additions decrease the stability of productivity in both wet and arid grasslands. Nutrient enrichment increases the sensitivity of productivity to low rainfall years in wet grasslands, whereas nutrient enrichment in arid grasslands increases the sensitivity of productivity to high rainfall years.


Subject(s)
Grassland , Nitrogen/analysis , Climate , Ecosystem , Poaceae
12.
Sci Total Environ ; 576: 234-241, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27788438

ABSTRACT

Leymus chinensis is the most promising grass species for salt-alkaline grassland restoration in northern China. However, little information exists concerning the role of arbuscular mycorrhizal (AM) symbiosis in the adaptation of seedlings to salt-alkali stress, particularly under increased nitrogen deposition, which has become a major environmental problem throughout the world. In this study, Leymus chinensis seedlings were cultivated in soil with 0, 100 and 200mM NaCl/NaHCO3 under two forms of nitrogen (10mM NH4NO3 or NH4Cl: NH4NO3=3:1), and the root colonization, growth and photosynthetic characteristics of the seedlings were measured. The results showed that the colonization rate and intensity decreased with increasing salt-alkali stress and were much lower under alkali stress. The nitrogen treatments also decreased the colonization, particularly under the NH4+-N treatment. Compared with the non-mycorrhizal controls, mycorrhizal seedlings generally presented higher plant biomass, photosynthetic parameters and contents of photosynthetic pigments under stresses, and the inhibitive effects of alkali stress were substantially stronger. In addition, both nitrogen forms decreased the physiological indexes compared with those of the AM seedlings. Our results suggest that salt stress and alkali stress are significantly different and that the salt-alkali tolerance of Leymus chinensis seedlings could be enhanced by associations with arbuscular mycorrhizal fungi, in which would yield better plant growth and photosynthesis. Excessive nitrogen in the soil affects mycorrhizal colonization and thereby inhibits the growth and photosynthetic ability of the seedlings.


Subject(s)
Mycorrhizae , Photosynthesis , Poaceae/growth & development , Stress, Physiological , Alkalies , China , Nitrogen , Plant Roots/microbiology , Poaceae/microbiology , Salts , Seedlings/growth & development , Seedlings/microbiology
13.
Biol Open ; 5(6): 720-5, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27170257

ABSTRACT

Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest.

14.
PeerJ ; 4: e1485, 2016.
Article in English | MEDLINE | ID: mdl-26855854

ABSTRACT

Leymus chinensis is a dominant grass in the Songnen grassland of Northern China. The lower germination caused by the presence of lemmas has proved to be an obstacle for the use of the seeds of this plant by humans. However, it is still unknown if the lemmas have other ecological roles such as resisting drought and saline conditions. Three experiments were designed to investigate the ecological roles of the lemmas in Leymus chinensis seeds. The results showed that lemmas significantly improved the amount of water uptake and slowed down the dehydration rate of the seeds under dry conditions. Likewise, the lemmas induced seed dormancy, and removal of the lemmas improved the germination at all temperatures. Although germination percentage of the seeds without lemmas were higher than that of seeds with lemmas under salinity stress, the recovery and total percentage were significantly lower than the seeds with lemmas, especially at 400 mM stress. These results suggest that the lemmas play a vital function in water uptake, dehydration and salt tolerance during the germination stage of the seeds as a response to adverse environmental conditions. Although lemmas showed a dormancy effect, if we want to plant this species in salinity soil in Northeast China, the approach of removing the lemmas by artificial means and improving the seed germination percentage is not feasible.

15.
PLoS One ; 9(8): e103633, 2014.
Article in English | MEDLINE | ID: mdl-25093814

ABSTRACT

Leymus chinensis is a dominant, rhizomatous perennial C3 species in the grasslands of Songnen Plain of Northern China, and its productivity has decreased year by year. To determine how productivity of this species responds to different precipitation regimes, elevated CO2 and their interaction in future, we measured photosynthetic parameters, along with the accumulation and partitioning of biomass. Plants were subjected to combinations of three precipitation gradients (normal precipitation, versus normal ± 40%) and two CO2 levels (380 ± 20 µmol mol(-1),760 ± 20 µmol mol(-1)) in controlled-environment chambers. The net photosynthetic rate, and above-ground and total biomass increased due to both elevated CO2 and increasing precipitation, but not significantly so when precipitation increased from the normal to high level under CO2 enrichment. Water use efficiency and the ratio of root: total biomass increased significantly when precipitation was low, but decreased when it was high under CO2 enrichment. Moreover, high precipitation at the elevated level of CO2 increased the ratio between stem biomass and total biomass. The effect of elevated CO2 on photosynthesis and biomass accumulation was higher at the low level of precipitation than with normal or high precipitation. The results suggest that at ambient CO2 levels, the net photosynthetic rate and biomass of L. chinensis increase with precipitation, but those measures are not further affected by additional precipitation when CO2 is elevated. Furthermore, CO2 may partly compensate for the negative effect of low precipitation on the growth and development of L. chinensis.


Subject(s)
Biomass , Carbon Dioxide/pharmacology , Photosynthesis , Poaceae , Rain , Seedlings/growth & development , Dose-Response Relationship, Drug , Environment, Controlled , Germination/drug effects , Photosynthesis/drug effects , Plant Leaves/growth & development , Poaceae/drug effects , Poaceae/growth & development , Rhizome/drug effects , Rhizome/growth & development , Seasons , Seedlings/drug effects , Water/pharmacology
16.
ScientificWorldJournal ; 2014: 213401, 2014.
Article in English | MEDLINE | ID: mdl-25121110

ABSTRACT

Leymus chinensis has extensive ecological adaptability and can grow well in saline-alkaline soils. The knowledge about tolerance mechanisms of L. chinensis could be base for utilization of saline-alkaline soils and grassland restoration and rebuilding. Two neutral salts (NaCl : Na2SO4 = 9 : 1) and two alkaline salts (NaHCO3 : Na2CO3 = 9 : 1) with concentration of 0, 100, and 200 mmol/L were used to treat potted 35-day-old seedlings with rhizome growth, respectively. After 10 days, the biomass and number of daughter shoots all decreased, with more reduction in alkali than in salt stress. The rhizome biomass reduced more than other organs. The number of daughter shoots from rhizome was more than from tillers. Under both stresses, Na(+) contents increased more in rhizome than in other organs; the reduction of K(+) content was more in underground than aerial tissue. Anion ions or organic acids were absorbed to neutralize cations. Na(+) content in stem and leaf increased markedly in high alkalinity (200 mmol/L), with accumulation of soluble sugar and organic acids sharply. Rhizomes help L. chinensis to adapt to saline and low alkaline stresses by transferring Na(+). However, rhizomes lost the ability to prevent Na(+) transport to aerial organs under high alkalinity, which led to severe growth inhibition of L. chinensis.


Subject(s)
Adaptation, Biological/physiology , Alkalies , Poaceae/physiology , Rhizome/physiology , Salts , Stress, Physiological/physiology , Analysis of Variance , Carbonates/metabolism , China , Sodium Bicarbonate/metabolism , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...