Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
J Cell Mol Med ; 28(13): e18505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001579

ABSTRACT

Hypoxia-ischaemia (HI) can induce the death of cerebrovascular constituent cells through oxidative stress. Hydrogen is a powerful antioxidant which can activate the antioxidant system. A hypoxia-ischaemia brain damage (HIBD) model was established in 7-day-old SD rats. Rats were treated with different doses of hydrogen-rich water (HRW), and brain pericyte oxidative stress damage, cerebrovascular function and brain tissue damage were assessed. Meanwhile, in vitro-cultured pericytes were subjected to oxygen-glucose deprivation and treated with different concentrations of HRW. Oxidative injury was measured and the molecular mechanism of how HRW alleviated oxidative injury of pericytes was also examined. The results showed that HRW significantly attenuated HI-induced oxidative stress in the brain pericytes of neonatal rats, partly through the Nrf2-HO-1 pathway, further improving cerebrovascular function and reducing brain injury and dysfunction. Furthermore, HRW is superior to a single-cell death inhibitor for apoptosis, ferroptosis, parthanatos, necroptosis and autophagy and can better inhibit HI-induced pericyte death. The liver and kidney functions of rats were not affected by present used HRW dose. This study elucidates the role and mechanism of hydrogen in treating HIBD from the perspective of pericytes, providing new theoretical evidence and mechanistic references for the clinical application of hydrogen in neonatal HIE.


Subject(s)
Animals, Newborn , Brain , Hydrogen , Hypoxia-Ischemia, Brain , Oxidative Stress , Pericytes , Rats, Sprague-Dawley , Animals , Pericytes/drug effects , Pericytes/metabolism , Hydrogen/pharmacology , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Rats , Oxidative Stress/drug effects , Brain/pathology , Brain/drug effects , Brain/metabolism , NF-E2-Related Factor 2/metabolism , Apoptosis/drug effects , Disease Models, Animal , Antioxidants/pharmacology
2.
Transl Lung Cancer Res ; 13(5): 1121-1136, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854947

ABSTRACT

Non-small cell lung cancer (NSCLC) is a malignant cancer that with high incidence, recurrence, and mortality rates in human beings, posing significant threats to human health. Moreover, effective early diagnosis of NSCLC remains limited primarily by the lack of accurate biomarkers. Therefore, there is an urgent need to understand the mechanisms underlying NSCLC pathogenesis and treatment failure. Methyltransferase-like 3 (METTL3) is a prototypical member of a family of which its members transfer methyl groups. It has been implicated in modulating the pathogenesis of NSCLC, as well as conferring resistance to NSCLC therapeutics. The targeting of METTL3 for NSCLC treatment has been reported. However, the relationship between METTL3 and NSCLC remains to be demonstrated. In this review, we discuss relevant interrelationships by summarising the studies on METTL3 in NSCLC pathogenesis, therapeutic resistance, and clinical applications. Current research suggests that the upregulation of METTL3 expression propels the tumorigenesis, progression, and treatment resistance of NSCLC. Therefore, we propose that METTL3 is an excellent candidate biomarker for NSCLC diagnosis and prognosis. Therapeutic targeting of METTL3 has significant potential for NSCLC treatment. This review provides a summary of the association between METTL3 and NSCLC, which would be a valuable reference for both basic and clinical research.

3.
FASEB J ; 38(13): e23744, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38885031

ABSTRACT

The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.


Subject(s)
ARNTL Transcription Factors , Estrous Cycle , Hypothalamo-Hypophyseal System , Mice, Knockout , Ovary , Reproduction , Animals , Female , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Mice , Ovary/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Reproduction/physiology , Estrous Cycle/physiology , Prolactin/metabolism , Progesterone/metabolism , Fertility/physiology , Mice, Inbred C57BL
4.
Front Physiol ; 15: 1368892, 2024.
Article in English | MEDLINE | ID: mdl-38887319

ABSTRACT

Introduction: Endothelial dysfunction indicates blood vessel injury and is a risk factor for cardiovascular diseases. Blueberry has been approved for its benefits on human health, especially on cardiovascular function. However, its effect on endothelial function remains unclear. We conducted a systematic review and meta-analysis to explore the impact of blueberries on endothelial function in adults. Methods: We searched PubMed, Web of Science, Embase, and the Cochrane Library, 16 studies were included in the systematic review, and 11 were used for the meta-analysis. Data associated with endothelial function were extracted and pooled as mean differences (MD) with 95% confidence intervals (CI). Results: Blueberry consumption significantly improved flow-mediated dilation (FMD) by 1.50% (95% CI: 0.81, 2.20; I2 = 87%) and reactive hyperemia index (RHI) by 0.26 (95% CI: 0.09, 0.42; I2 = 72%). A significant decrease in diastolic blood pressure (DBP) was also observed (MD: -2.20 mm Hg; 95% CI: -4.13, -0.27; I2 = 11%). Subgroup analysis indicated a significant decrease in blood pressure (Systolic blood pressure [SBP]: -3.92 mmHg; 95% CI: -6.88, -0.97; I2 = 20% and DBP: -2.20 mmHg; 95% CI: -4.13, -0.27; I2 = 11%) in the smoking population. However, SBP levels (MD: -1.43 mm Hg; 95% CI: -3.11, 0.26; I2 = 20%) and lipid status (high-density lipoprotein cholesterol [HDL-C]: 0.06; 95% CI: -0.04, 0.16; I2 = 77%; low-density lipoprotein cholesterol [LDL-C]: 0.05; 95% CI: -0.14, 0.24; I2 = 0%) did not significantly improve. Conclusion: Blueberry intervention improved endothelial function and DBP. Subgroup analysis revealed a notable improvement in blood pressure among the smoking population. However, no significant effects were observed on SBP, HDL-C, and LDL-C levels. Future research should delve into the mechanisms of endothelial improvement and verify blood pressure reduction in specific subpopulations through large-scale trials. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/, Identifier CRD42023491277.

5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 437-443, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802901

ABSTRACT

The UK screening and treatment of retinopathy of prematurity (ROP) updated 2022 guidelines were developed by a multidisciplinary guideline development group from the Royal College of Paediatrics and Child Health and the Royal College of Ophthalmologists, following the standards of the National Institute for Health and Care Excellence. They were published on the websites of the Royal College of Paediatrics and Child Health and the Royal College of Ophthalmologists in March 2022, and formally published in Early Human Development in March 2023. The guidelines provide evidence-based recommendations for the screening and treatment of ROP. The most significant change in the 2022 updated version compared to the previous guidelines is the lowering of the gestational age screening criterion to below 31 weeks. The treatment section covers treatment indications, timing, methods, and follow-up visits of ROP. This article interprets the guidelines and compares them with ROP guidelines/consensus in China, providing a reference for domestic peers.


Subject(s)
Practice Guidelines as Topic , Retinopathy of Prematurity , Humans , Retinopathy of Prematurity/diagnosis , Retinopathy of Prematurity/therapy , Infant, Newborn , United Kingdom , Neonatal Screening , Gestational Age
6.
Endocrine ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740695

ABSTRACT

PURPOSE: This study aimed to investigate the effects of randomized, placebo-controlled trials involving the GLP-1 and glucagon receptor dual agonists, mazdutide, and cotadutide, on glycaemic control and body weight changes in individuals with type 2 diabetes mellitus (T2DM), obesity, or both. METHODS: We conducted searches in Medline, PubMed, Scopus, the Cochrane database, and Web of Science up to March 5, 2024. The primary outcomes assessed were changes in HbA1c level and percentage changes in body weight from baseline (CFB). RESULTS: Eleven studies and four unpublished trials were included. The pooled meta-analysis revealed a significant reduction in HbA1c (MD = -0.63%; 95% CI = [-0.82, -0.44]; P < 0.00001), fasting plasma glucose (MD = -1.71 mmol/L; 95% CI = [-2.31, -1.10]; P < 0.00001), and percentage change in body weight (MD = -4.16%; 95% CI = [-5.41, -2.92]; P < 0.00001). Safety analysis revealed no significant change in serious adverse events (OR = 1.03; 95% CI = [0.61, 1.75]; P = 0.91), but there were significantly higher odds of treatment-emergent adverse events (OR = 2.52; 95% CI = [1.92, 3.30]; P < 0.00001) and vomiting (OR = 6.05; 95% CI = [3.52, 10.40]; P < 0.00001). CONCLUSION: These results suggest that mazdutide and cotadutide are effective for glycaemic control and weight reduction in individuals with T2DM, obesity, or both.

7.
J Cell Mol Med ; 28(4): e18128, 2024 02.
Article in English | MEDLINE | ID: mdl-38332508

ABSTRACT

Several studies have highlighted the functional indispensability of methyltransferase-like 3 (METTL3) in the reproductive system. However, a review that comprehensively interprets these studies and elucidates their relationships is lacking. Therefore, the present work aimed to review studies that have investigated the functions of METTL3 in the reproductive system (including spermatogenesis, follicle development, gametogenesis, reproductive cancer, asthenozoospermia and assisted reproduction failure). This review suggests that METTL3 functions not only essential for normal development, but also detrimental in the occurrence of disorders. In addition, promising applications of METTL3 as a diagnostic or prognostic biomarker and therapeutic target for reproductive disorders have been proposed. Collectively, this review provides comprehensive interpretations, novel insights, potential applications and future perspectives on the role of METTL3 in regulating the reproductive system, which may be a valuable reference for researchers and clinicians.


Subject(s)
Methyltransferases , RNA , Male , Humans , Methyltransferases/genetics , Spermatogenesis/genetics , Reproduction/genetics , Genitalia
8.
Am J Med Genet A ; 194(6): e63568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38353426

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is a monogenic disease caused by biallelic mutations in adenosine deaminase 2 (ADA2). The varying phenotypes of the disease often lead to delayed diagnosis or misdiagnosis. We report an 11-year-old boy with DADA2 and provide a preliminary analysis of genotype-phenotype correlation. The age of onset of the disease was 8 years old. The disease successively involved the brainstem, muscles, joints, and cerebrum. After three relapse-remission episodes over 3 years, the patient was finally diagnosed with DADA2 by whole-exome sequencing. Compound heterozygous variants in the ADA2 gene (NM_001282225.2: c.1072G>A, p.Gly358Arg; c.419dupC, p.Arg141Lysfs*37) were found in the patient. He did not receive anti-TNF therapy and had no relapse after a 8-month follow-up. We identified a novel variant of the ADA2 gene, and the associated disease course may follow a relapse-remission pattern. Homozygous mutations of p.Gly358Arg can cause pure red cell aplasia, whereas compound heterozygous variations may lead to different phenotypes. Variants in the catalytic domain and frameshift mutations may also cause relatively benign phenotypes besides causing hematological disorders. Further studies are needed to clarify the genotypic-phenotypic relationship of this disease.


Subject(s)
Adenosine Deaminase , Genetic Association Studies , Hereditary Autoinflammatory Diseases , Intercellular Signaling Peptides and Proteins , Mutation , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/deficiency , Male , Child , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/deficiency , Mutation/genetics , Phenotype , Exome Sequencing , Recurrence , Genotype
9.
Chin Med J (Engl) ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38404117

ABSTRACT

BACKGROUND: Very low birth weight (VLBW) infants are the key populations in neonatology, wherein morbidity and mortality remain major challenges. METHODS: A retrospective cohort study conducted aiming to analyze the clinical characteristics of VLBW in our hospital between January 2016 and December 2021. Neonates with a birth weight of <1500 g were included. Mortality, care practices, and major morbidities were analyzed, and compared with that of previous 7 years (2009-2015). RESULTS: Of the total 1750 VLBW, 1386 infants born with birth weight between 1000-1499 g and 364 were below 1000 g, 42.9% (751/1750) required delivery room resuscitation, 53.9% (943/1750) received non-invasive ventilation only, 38.2% (669/1750) received invasive ventilation; 1517 VLBW infants received complete treatment. Among them, 60.1% (912/1517) of neonates had neonatal respiratory distress syndrome (NRDS), 28.7% (436/1517) had bronchopulmonary dysplasia (BPD), 22.0% (334/1517) had apnea, 11.1% (169/1517) had culture-confirmed sepsis, 8.4% (128/1517) had pulmonary hemorrhage, 7.6% (116/1517) had severe intraventricular hemorrhage (IVH)/periventricular leukomalacia (PVL), 5.7% (87/1517) had necrotizing enterocolitis (NEC), 2.0% (31/1517) had severe retinopathy of prematurity. The total and in-hospital mortality rates were 9.7% (169/1750) and 3.0% (45/1517), respectively. The top three diagnoses of death among those who had received complete treatment were sepsis, NRDS, and NEC. In 2009-2015, 1146 VLBW were enrolled and 895 infants received complete treatment. The incidences of apnea, IVH, and IVH stage ≥3/PVL, were higher in 2009-2015 compared with those in 2016-2021, while the incidences of NRDS and BPD were characterized by significant increases in 2016-2021. The total and in-hospital mortality rates were 16.7% (191/1146) and 5.6% (50/895) respectively in 2009-2015. CONCLUSION: Among VLBW infants born in 2016-2021, the total and in-hospital mortality rates were lower than those of neonates born in 2009-2015. Incidences of NRDS and BPD increased in 2016-2021, which affected the survival rates and long-term prognosis of VLBW.

10.
Biomed Pharmacother ; 172: 116157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301420

ABSTRACT

Methyltransferase-like 3 (METTL3), a component of the RNA N6-methyladenosine (m6A) modification with a specific catalytic capacity, controls gene expression by actively regulating RNA splicing, nuclear export, stability, and translation, determines the fate of RNAs and assists in regulating biological processes. Studies conducted in recent decades have demonstrated the pivotal regulatory role of METTL3 in liver disorders, including hepatic lipid metabolism disorders, liver fibrosis, nonalcoholic steatohepatitis, and liver cancer. Although METTL3's roles in these diseases have been extensively investigated, the regulatory network of METTL3 and its potential applications remain unexplored. In this review, we provide a comprehensive overview of the roles and mechanisms of METTL3 implicated in these diseases, establish a regulatory network of METTL3, evaluate the potential for targeting METTL3 for diagnosis and treatment, and discuss avenues for future development and research. We found relatively upregulated expressions of METTL3 in these liver diseases, demonstrating its potential as a diagnostic biomarker and therapeutic target.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Methyltransferases/genetics , Liver Cirrhosis , Catalysis , RNA
11.
Nat Commun ; 15(1): 1864, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424077

ABSTRACT

Early-life human gut microbiome is a pivotal driver of gut homeostasis and infant health. However, the viral component (known as "virome") remains mostly unexplored. Here, we establish the Early-Life Gut Virome (ELGV), a catalog of 160,478 non-redundant DNA and RNA viral sequences from 8130 gut virus-like particles (VLPs) enriched or bulk metagenomes in the first three years of life. By clustering, 82,141 viral species are identified, 68.3% of which are absent in existing databases built mainly from adults, and 64 and 8 viral species based on VLPs-enriched and bulk metagenomes, respectively, exhibit potentials as biomarkers to distinguish infants from adults. With the largest longitudinal population of infants profiled by either VLPs-enriched or bulk metagenomic sequencing, we track the inherent instability and temporal development of the early-life human gut virome, and identify differential viruses associated with multiple clinical factors. The mother-infant shared virome and interactions between gut virome and bacteriome early in life are further expanded. Together, the ELGV catalog provides the most comprehensive and complete metagenomic blueprint of the early-life human gut virome, facilitating the discovery of pediatric disease-virome associations in future.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Viruses , Adult , Infant , Child , Humans , Metagenome/genetics , Virome/genetics , Viruses/genetics , Gastrointestinal Microbiome/genetics
12.
Mol Neurobiol ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383919

ABSTRACT

Epilepsy is sudden, recurrent, and transient central nervous system dysfunction caused by abnormal discharge of neurons in the brain. Ferroptosis and pyroptosis are newly discovered ways of programmed cell death. One of the characteristics of ferroptosis is the oxidative stress generated by lipid peroxides. Similarly, pyroptosis has unique pro-inflammatory properties. As both oxidative stress and neuroinflammation are significant contributors to the pathogenesis of epilepsy, increasing evidence shows that ferroptosis and pyroptosis are closely related to epilepsy. This article reviews the current comprehension of ferroptosis and pyroptosis and elucidates potential mechanisms by which ferroptosis and pyroptosis may contribute to epilepsy. In addition, we also highlight the possible interactions between ferroptosis and pyroptosis because they reportedly coexist in many diseases, and increasing studies have demonstrated the convergence of pathways between the two. This is of great significance for explaining the occurrence and development of epilepsy and provides a new therapeutic perspective for the treatment of epilepsy.

13.
BMC Pediatr ; 24(1): 77, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267850

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) has been widely used in severe neonatal diseases for approximately 50 years, while few studies have concentrated on the long-term follow-up of its neuropsychological development. OBJECTIVE: To assess the long-term neuropsychological complications in children who underwent ECMO in infancy. METHODS: The PubMed, Web of Science, Cochrane, and EMBASE databases were searched for retrieving studies published in the recent 10 years (until June 10, 2022). All studies were eligible that concentrated on the long-term follow-up of neuropsychological complications in neonates undergoing ECMO. Excluding animal studies, neonates with congenital craniocerebral dysplasia and studies with data from the same center performed at different times. Statistical analysis was performed using RevMan 5.3 and Stata/SE 12.0 software. A random-effects model was used to report results. The sensitivity analysis was utilized to identify sources of heterogeneity. RESULTS: The meta-analysis of 10 studies that enrolled 1199 patients was conducted, showing the pooled morbidity of intelligence (pooled morbidity: 20.3%, 95% CI: 0.16-0.25, I2: 9.5%, P=0.33), motor activity (pooled morbidity: 10.3%, 95%CI: 0.07-0.14, I2: 43.5%, P=0.15), learning (pooled morbidity: 9.0%, 95%CI: -0.03-0.21, I2: 63.2%, P=0.10), hearing (pooled morbidity: 15.7%, 95%CI: 0.02-0.29, I2: 94.2%, P=0.00), vision (pooled morbidity: 18.5%, 95%CI: 0.12-0.25, I2: 0%, P=0.46), cognition (pooled morbidity: 26.3%, 95%CI: 0.19-0.34, I2: 0%, P=0.32), attention (pooled morbidity: 7.4%, 95%CI: 0.02-0.13, I2: 38.9%, P=0.20), speed in attention (pooled morbidity: 69.9%, 95%CI: 0.62-0.78), and accuracy in attention (pooled morbidity: 39.0%, 95%CI: 0.30-0.48) in neonates undergoing ECMO. The results of the Begg's test and sensitivity analysis indicated that the heterogeneity was originated from factors other than sample size. CONCLUSION: This systematic review and meta-analysis showed that neonates undergoing ECMO were associated with various neuropsychological complications. Additional randomized controlled trials (RCTs) with a larger sample size and a higher quality are needed.


Subject(s)
Extracorporeal Membrane Oxygenation , Child , Humans , Infant, Newborn , Cognition , Extracorporeal Membrane Oxygenation/adverse effects , Follow-Up Studies , Hearing
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167010, 2024 03.
Article in English | MEDLINE | ID: mdl-38176459

ABSTRACT

Methyltransferase-like 3 (METTL3) is the most well-known element of N6-methyladenosine modification on RNAs. METTL3 deposits a methyl group onto target RNAs to modify their expression, ultimately regulating various physiological and pathological events. Numerous studies have suggested the significant role of METTL3 in endocrine dysfunction and related disorders. However, reviews that summarize and interpret these studies are lacking. In this review, we systematically analyze such studies, including obesity, type 2 diabetes mellitus (T2DM), T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. This review indicates that METTL3 contributes remarkably to the endocrine dysfunction and progression of obesity, T2DM, T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. In conclusion, this review provides a comprehensive interpretation of the mechanism via which METTL3 functions on RNAs and regulates various endocrine dysfunction events and suggest potential associated correlations. Our review, thus, provides a valuable reference for further fundamental studies and clinical applications.


Subject(s)
Diabetes Mellitus, Type 2 , Pancreatic Diseases , Thyroid Neoplasms , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Diabetes Mellitus, Type 2/genetics , RNA , Endocrine System/metabolism , Obesity
15.
Neuroscience ; 536: 36-46, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37967738

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is an abnormal neurological condition caused by hypoxic-ischemic damage during the perinatal period. Human placenta derived mesenchymal stem cells (hPMSCs) have been shown to have protective and reparative effects in various neurological diseases; however, the research on HIE is insufficient. This study aimed to establish a rat model of HIE and transplant hPMSCs through the lateral ventricle after hypoxic-ishcemic (HI) brain damage to observe its protective effects and mechanisms, with a focus on brain apoptosis compared among groups. Differentially expressed apoptosis-related proteins were screened using a rat cytokine array and subsequent verification. Neuropilin-1 (NRP-1) and Semaphorin 3A (Sema 3A) were selected for further investigation. Western blotting was used to quantify the expression of Sema 3A and the proteins related to PI3K/Akt/mTOR signaling pathway. Exogenous Sema 3A was added to evaluate the effects of Sema 3A/NRP-1 on hPMSCs following HI injury. hPMSCs transplantation ameliorated HI-induced pathological changes, reduced apoptosis, and improved long-term neurological prognosis. Furthermore, Sema 3A/NRP-1 was a key regulator in reducing HI-induced apoptosis after hPMSCs transplantation. hPMSCs inhibited the expression of Sema 3A/NRP-1 and activated the PI3K/Akt/mTOR signaling pathway. Additionally, exogenous Sema 3A abolished the protective effects of hPMSCs against HI. In conclusion, hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis after HI by downregulating Sema 3A/NRP-1 expression and activating the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Mesenchymal Stem Cells , Semaphorin-3A , Female , Pregnancy , Rats , Humans , Animals , Animals, Newborn , Neuropilin-1 , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , TOR Serine-Threonine Kinases , Apoptosis , Mesenchymal Stem Cells/metabolism
16.
Twin Res Hum Genet ; : 1-9, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099413

ABSTRACT

The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA-mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-ß signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM-receptor interaction, focal adhesion and TGF-ß signaling, might be involved in the occurrence of CHDs.

17.
Front Pediatr ; 11: 1238762, 2023.
Article in English | MEDLINE | ID: mdl-38027304

ABSTRACT

Background: Hypoxia can threaten the metabolic functions of different systems in immature neonates, particularly the central nervous system. The red blood cell distribution width (RDW) has recently been reported as a prognostic factor in neurologic diseases. Herein, we examined the correlation between RDW and regional cerebral tissue oxygen saturation (rcSO2). Methods: This cross-sectional study included 110 preterm infants born at a gestational age (GA) of <32 weeks, or with a birth weight (BW) of <1,500 g at our institution between January and June 2,022. The rcSO2 was monitored using near-infrared spectroscopy, and RDW was extracted from the complete blood count during the first 14 days after birth. RDW and rcSO2 measurements were analyzed using a cross-sectional research method. Results: We divided the study population into two groups, with a mean rcSO2 value over the first 14 days. Fifty-three preterm had rcSO2 ≥ 55% and 57% < 55%. The 14-days-mean in the study population showing an association of lower rcSO2 values with higher RDW values. Significantly higher RDW values were observed in the low rcSO2 group compared with those in the high rcSO2 group. Threshold effect analysis showed that rcSO2 decreased with RDW values ≥18% (ß, -0.03; 95% CI, -0.04 and -0.02; p ≥ 0.0001). After adjusting for potential confounders, an RDW of ≥18% was determined as the predictive cutoff value for preterm infants with low rcSO2 (Model I: OR, 3.31; 95% CI, 1.36-8.06; p = 0.009; and Model II: OR, 3.31; 95% CI, 1.28-8.53; p = 0.013). Conclusions: An RDW of ≥18% in the first 14 days is associated with rcSO2 of <55% in preterm infants.

18.
Trials ; 24(1): 647, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803402

ABSTRACT

BACKGROUND: Health problems in neonates with gestational age (GA) ≥ 32 weeks remain a major medical concern. Respiratory distress (RD) is one of the common reasons for admission of neonates with GA ≥ 32 weeks. Noninvasive ventilation (NIV) represents a crucial approach to treat RD, and currently, the most used NIV modes in neonatal intensive care unit include high-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP), and nasal intermittent positive pressure ventilation. Although extensive evidence supports the use of NIPPV in neonates with a GA < 32 weeks, limited data exist regarding its effectiveness in neonates with GA ≥ 32 weeks. Therefore, the aim of this study is to compare the clinical efficacy of HFNC, CPAP, and NIPPV as primary NIV in neonates with GA ≥ 32 weeks who experience RD. METHODS: This trial is designed as an assessor-blinded, three-arm, multi-center, parallel, randomized controlled trial, conducted in neonates ≥ 32 weeks' GA requiring primary NIV in the first 24 h of life. The neonates will be randomly assigned to one of three groups: HFNC, CPAP or NIPPV group. The effectiveness, safety and comfort of NIV will be evaluated. The primary outcome is the occurrence of treatment failure within 72 h after enrollment. Secondary outcomes include death before discharge, surfactant treatment within 72 h after randomization, duration of both noninvasive and invasive mechanical ventilation, duration of oxygen therapy, bronchopulmonary dysplasia, time to achieve full enteral nutrition, necrotizing enterocolitis, duration of admission, cost of admission, air leak syndrome, nasal trauma, and comfort score. DISCUSSION: Currently, there is a paucity of data regarding the utilization of NIPPV in neonates with GA ≥ 32 weeks. This study will provide clinical evidence for the development of respiratory treatment strategies in neonates at GA ≥ 32 weeks with RD, with the aim of minimizing the incidence of tracheal intubation and reducing the complications associated with NIV. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2300069192. Registered on March 9, 2023, https://www.chictr.org.cn/showproj.html?proj=171491 .


Subject(s)
Noninvasive Ventilation , Respiratory Distress Syndrome, Newborn , Infant, Newborn , Humans , Infant , Intermittent Positive-Pressure Ventilation/adverse effects , Intermittent Positive-Pressure Ventilation/methods , Continuous Positive Airway Pressure/adverse effects , Continuous Positive Airway Pressure/methods , Gestational Age , Infant, Premature , Cannula , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/therapy , Noninvasive Ventilation/adverse effects , Dyspnea , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
19.
J Evid Based Med ; 16(3): 394-413, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674304

ABSTRACT

High-flow nasal cannula (HFNC) oxygen therapy, which is important in noninvasive respiratory support, is increasingly being used in critically ill neonates with respiratory failure because it is comfortable, easy to setup, and has a low incidence of nasal trauma. The advantages, indications, and risks of HFNC have been the focus of research in recent years, resulting in the development of the application. Based on current evidence, we developed guidelines for HFNC in neonates using the Grading of Recommendations Assessment, Development and Evaluation (GRADE). The guidelines were formulated after extensive consultations with neonatologists, respiratory therapists, nurse specialists, and evidence-based medicine experts. We have proposed 24 recommendations for 9 key questions. The guidelines aim to be a source of evidence and reference of HFNC oxygen therapy in clinical practice, and so that more neonates and their families will benefit from HFNC.


Subject(s)
Cannula , Respiratory Insufficiency , Infant, Newborn , Humans , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/therapy , Evidence-Based Medicine , Oxygen
20.
Hum Genomics ; 17(1): 78, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626401

ABSTRACT

BACKGROUND: The RNA m6A modification has been implicated in multiple neurological diseases as well as macrophage activation. However, whether it regulates microglial activation during hypoxic-ischemic brain damage (HIBD) in neonates remains unknown. Here, we aim to examine whether the m6A modification is involved in modulating microglial activation during HIBD. We employed an oxygen and glucose deprivation microglial model for in vitro studies and a neonatal mouse model of HIBD. The brain tissue was subjected to RNA-seq to screen for significant changes in the mRNA m6A regulator. Thereafter, we performed validation and bioinformatics analysis of the major m6A regulators. RESULTS: RNA-seq analysis revealed that, among 141 m6A regulators, 31 exhibited significant differential expression (FC (abs) ≥ 2) in HIBD mice. We then subjected the major m6A regulators Mettl3, Mettl14, Fto, Alkbh5, Ythdf1, and Ythdf2 to further validation, and the results showed that all were significantly downregulated in vitro and in vivo. GO analysis reveals that regulators are mainly involved in the regulation of cellular and metabolic processes. The KEGG results indicate the involvement of the signal transduction pathway. CONCLUSIONS: Our findings demonstrate that m6A modification of mRNA plays a crucial role in the regulation of microglial activation in HIBD, with m6A-associated regulators acting as key modulators of microglial activation.


Subject(s)
Macrophage Activation , Microglia , Animals , Mice , Animals, Newborn , Brain , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...