Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38598525

ABSTRACT

Surface-active bonding (SAB) is a promising technique for semiconductors directly bonding. However, the interlayer of the bonding interface and the reduced layer thickness may affect thermal transport. In this study, the temperature-dependent cross-plane thermal conductivity of 4H-SiC thin films and the effective thermal boundary resistance (TBReff) of the bonding SiC-on-SiC are measured by the multiple-probe wavelength nanosecond transient thermoreflectance (MW-TTR). The measured temperature-dependent cross-plane thermal conductivity of the 4H-SiC thin film exhibits good quantitative agreement with calculation by density functional theory (DFT) including higher-order four-phonon (4ph) scattering, especially at high temperatures (>400 K). The theoretical calculations indicate the non-negligible importance of 4ph scattering in 4H-SiC high-temperature applications, due to the significantly increasing 4ph scattering rate at increasing temperature and strong temperature dependence of 4ph scattering. The measured nonzero but small TBReff (2.33 + 0.43/-1.15 m2 K/GW) at the SiC-SiC interface is analyzed with molecular dynamics (MD) simulation, indicating that a strong bonding interface with an extremely thin interlayer is formed by the SAB process. Two-dimensional finite element simulations of the experimental equivalent structures are further investigated, and the significant effects (at least 19 °C) of TBReff on the maximum temperature (Tmax) are confirmed. This study provides insight into the fundamental phonon transport and interface thermal transport mechanism in SAB SiC-on-SiC and paves the way for improved 4H-SiC efficient device manufacturing and thermal management.

2.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37512675

ABSTRACT

Cu-Cu direct interconnects are highly desirable for the microelectronic industry as they allow for significant reductions in the size and spacing of microcontacts. The main challenge associated with using Cu is its tendency to rapidly oxidize in air. This research paper describes a method of Cu passivation using a self-assembled monolayer (SAM) to protect the surface against oxidation. However, this approach faces two main challenges: the degradation of the SAM at room temperature in the ambient atmosphere and the monolayer desorption technique prior to Cu-Cu bonding. In this paper, the systematic investigation of these challenges and their possible solutions are presented. The methods used in this study include thermocompression (TC) bonding, X-ray photoelectron spectroscopy (XPS), shear strength testing, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The results indicate nearly no Cu oxidation (4 at.%) for samples with SAM passivation in contrast to the bare Cu surface (27 at.%) after the storage at -18 °C in a conventional freezer for three weeks. Significant improvement was observed in the TC bonding with SAM after storage. The mean shear strength of the passivated samples reached 65.5 MPa without storage. The average shear strength values before and after the storage tests were 43% greater for samples with SAM than for the bare Cu surface. In conclusion, this study shows that Cu-Cu bonding technology can be improved by using SAM as an oxidation inhibitor, leading to a higher interconnect quality.

3.
ACS Omega ; 8(1): 457-463, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643520

ABSTRACT

The wafer-scale single-crystal GaN film was transferred from a commercial bulk GaN wafer onto a Si (100) substrate by combining ion-cut and surface-activated bonding. Well-defined, uniformly thick, and large-scale wafer size ReS2 multilayers were grown on the GaN substrate. Finally, ReS2 photodetectors were fabricated on GaN and sapphire substrates, respectively, and their performances were compared. Due to the polarization effect of GaN, the ReS2/GaN photodetector showed better performance. The ReS2/GaN photodetector has a responsivity of 40.12 A/W, while ReS2/sapphire has a responsivity of 0.17 A/W. In addition, the ReS2/GaN photodetector properties have reached an excellent reasonable level, including a photoconductive gain of 447.30, noise-equivalent power of 1.80 × 10-14 W/Hz1/2, and detectivity of 1.21 × 1010 Jones. This study expands the way to enhance the performance of ReS2 photodetectors.

5.
Materials (Basel) ; 15(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35407859

ABSTRACT

Polymer adhesives have emerged as a promising dielectric passivation layer in hybrid bonding for 3D integration, but they raise misalignment problems during curing. In this work, the synergistic effect of oxygen plasma surface activation and wetting is utilized to achieve bonding between completed cured polyimides. The optimized process achieves a void-less bonding with a maximum shear strength of 35.3 MPa at a low temperature of 250 °C in merely 2 min, significantly shortening the bonding period and decreasing thermal stress. It is found that the plasma activation generates hydrophilic groups on the polyimide surface, and the wetting process further introduces more -OH groups and water molecules on the activated polyimide surface. The synergistic process of plasma activation and wetting facilitates the bridging of polyimide interfaces to achieve bonding, providing an alternative path for adhesive bonding in 3D integration.

6.
ACS Appl Mater Interfaces ; 13(27): 31843-31851, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34191480

ABSTRACT

Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for ß-Ga2O3-SiC samples. Both the ß-Ga2O3 thermal conductivity and the buried ß-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 µm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.

7.
ACS Appl Mater Interfaces ; 12(40): 44943-44951, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32909730

ABSTRACT

The ultrawide band gap, high breakdown electric field, and large-area affordable substrates make ß-Ga2O3 promising for applications of next-generation power electronics, while its thermal conductivity is at least 1 order of magnitude lower than other wide/ultrawide band gap semiconductors. To avoid the degradation of device performance and reliability induced by the localized Joule-heating, proper thermal management strategies are essential, especially for high-power high-frequency applications. This work reports a scalable thermal management strategy to heterogeneously integrate wafer-scale monocrystalline ß-Ga2O3 thin films on high thermal conductivity SiC substrates by the ion-cutting technique and room-temperature surface-activated bonding technique. The thermal boundary conductance (TBC) of the ß-Ga2O3-SiC interfaces and thermal conductivity of the ß-Ga2O3 thin films were measured by time-domain thermoreflectance to evaluate the effects of interlayer thickness and thermal annealing. Materials characterizations were performed to understand the mechanisms of thermal transport in these structures. The results show that the ß-Ga2O3-SiC TBC values are reasonably high and increase with decreasing interlayer thickness. The ß-Ga2O3 thermal conductivity increases more than twice after annealing at 800 °C because of the removal of implantation-induced strain in the films. A Callaway model is built to understand the measured thermal conductivity. Small spot-to-spot variations of both TBC and Ga2O3 thermal conductivity confirm the uniformity and high quality of the bonding and exfoliation. Our work paves the way for thermal management of power electronics and provides a platform for ß-Ga2O3-related semiconductor devices with excellent thermal dissipation.

8.
ACS Appl Mater Interfaces ; 12(7): 8376-8384, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31986013

ABSTRACT

The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications, such as wireless communication and radar systems. However, the performance and reliability of GaN-based high-electron-mobility transistors (HEMTs) are limited by the high channel temperature induced by Joule heating in the device channel. Integration of GaN with high thermal conductivity substrates can improve the heat extraction from GaN-based HEMTs and lower the operating temperature of the device. However, heterogeneous integration of GaN with diamond substrates presents technical challenges to maximize the heat dissipation potential brought by the ultrahigh thermal conductivity of diamond substrates. In this work, two modified room-temperature surface-activated bonding (SAB) techniques are used to bond GaN and single-crystal diamond. Time-domain thermoreflectance (TDTR) is used to measure the thermal properties from room temperature to 480 K. A relatively large thermal boundary conductance (TBC) of the GaN/diamond interfaces with a ∼4 nm interlayer (∼90 MW/(m2 K)) was observed and material characterization was performed to link the interfacial structure with the TBC. Device modeling shows that the measured TBC of the bonded GaN/diamond interfaces can enable high-power GaN devices by taking full advantage of the ultrahigh thermal conductivity of single-crystal diamond. For the modeled devices, the power density of GaN-on-diamond can reach values ∼2.5 times higher than that of GaN-on-SiC and ∼5.4 times higher than that of GaN-on-Si with a maximum device temperature of 250 °C. Our work sheds light on the potential for room-temperature heterogeneous integration of semiconductors with diamond for applications of electronics cooling, especially for GaN-on-diamond devices.

9.
Micromachines (Basel) ; 10(10)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547592

ABSTRACT

Wafer bonding of a silicon carbide (SiC) diaphragm to a patterned SiC substrate coated with aluminum nitride (AlN) film as an insulating layer is a promising choice to fabricate an all-SiC capacitive pressure sensor. To demonstrate the bonding feasibility, a crystalline AlN film with a root-mean-square (RMS) surface roughness less than ~0.70 nm was deposited on a SiC wafer by a pulsed direct current magnetron sputtering method. Room temperature wafer bonding of SiC-AlN by two surface activated bonding (SAB) methods (standard SAB and modified SAB with Si nano-layer sputtering deposition) was studied. Standard SAB failed in the bonding, while the modified SAB achieved the bonding with a bonding energy of ~1.6 J/m2. Both the microstructure and composition of the interface were investigated to understand the bonding mechanisms. Additionally, the surface analyses were employed to confirm the interface investigation. Clear oxidation of the AlN film was found, which is assumed to be the failure reason of direct bonding by standard SAB.

10.
ACS Appl Mater Interfaces ; 11(36): 33428-33434, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31408316

ABSTRACT

High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of the high thermal conductivity of SiC substrates. For the typical growth method, there are issues concerning the transition layer at the interface and low-quality GaN adjacent to the interface, which impedes heat flow. In this work, a room-temperature bonding method is used to bond high-quality GaN to SiC directly, which allows for the direct integration of high-quality GaN with SiC to create a high TBC interface. Time-domain thermoreflectance is used to measure the GaN thermal conductivity and GaN-SiC TBC. The measured GaN thermal conductivity is larger than that of grown GaN-on-SiC by molecular beam epitaxy. High TBC is observed for the bonded GaN-SiC interfaces, especially for the annealed interface (∼230 MW m-2 K-1, close to the highest value ever reported). Thus, this work provides the benefit of both a high TBC and higher GaN thermal conductivity, which will impact the GaN-device integration with substrates in which thermal dissipation always plays an important role. Additionally, simultaneous thermal and structural characterizations of heterogeneous bonded interfaces are performed to understand the structure-thermal property relation across this new type of interface.

11.
Molecules ; 23(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115822

ABSTRACT

DNA detection with high sensitivity and specificity has tremendous potential as molecular diagnostic agents. Graphene and graphene-based nanomaterials, such as graphene nanopore, graphene nanoribbon, graphene oxide, and reduced graphene oxide, graphene-nanoparticle composites, were demonstrated to have unique properties, which have attracted increasing interest towards the application of DNA detection with improved performance. This article comprehensively reviews the most recent trends in DNA detection based on graphene and graphene-related nanomaterials. Based on the current understanding, this review attempts to identify the future directions in which the field is likely to thrive, and stimulate more significant research in this subject.


Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , Graphite/chemistry , Nanostructures/chemistry , Electrochemical Techniques , Equipment Design , Humans , Microfluidic Analytical Techniques , Oxides/chemistry
12.
ACS Appl Mater Interfaces ; 9(33): 27365-27371, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28792726

ABSTRACT

Single-crystal cubic silicon carbide has attracted great attention for MEMS and electronic devices. However, current leakage at the SiC/Si junction at high temperatures and visible-light absorption of the Si substrate are main obstacles hindering the use of the platform in a broad range of applications. To solve these bottlenecks, we present a new platform of single crystal SiC on an electrically insulating and transparent substrate using an anodic bonding process. The SiC thin film was prepared on a 150 mm Si with a surface roughness of 7 nm using LPCVD. The SiC/Si wafer was bonded to a glass substrate and then the Si layer was completely removed through wafer polishing and wet etching. The bonded SiC/glass samples show a sharp bonding interface of less than 15 nm characterized using deep profile X-ray photoelectron spectroscopy, a strong bonding strength of approximately 20 MPa measured from the pulling test, and relatively high optical transparency in the visible range. The transferred SiC film also exhibited good conductivity and a relatively high temperature coefficient of resistance varying from -12 000 to -20 000 ppm/K, which is desirable for thermal sensors. The biocompatibility of SiC/glass was also confirmed through mouse 3T3 fibroblasts cell-culturing experiments. Taking advantage of the superior electrical properties and biocompatibility of SiC, the developed SiC-on-glass platform offers unprecedented potentials for high-temperature electronics as well as bioapplications.


Subject(s)
Temperature , Animals , Cell Line , Electrodes , Glass , Mice , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...