Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 246: 114169, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36228353

ABSTRACT

The expanding applications of lanthanides (Ln) in various aspects have raised concerns about their biosafety. Slight changes in the chemical composition of environmental media can significantly affect the biological effectiveness of poorly water-soluble Ln; however, the knowledge of the effects of environmental factors on Ln toxicity remains limited. Here, the effects of pH, HCO3-, Ca2+, Mg2+, Na+, K+, Cl-, and SO42- on the bioefficacy and biotoxicity of Ln (La, Ce, Gd, and Ho) were comparatively studied using zebrafish (Danio rerio) as the test organism. In the standard water, the toxicity of Ln in zebrafish was significantly correlated with pH, HCO3-, and Ca2+-Mg2+ levels in the medium but not with the levels of Cl-, Na+, K+, and SO42-. At the beginning of the test, the four Ln were complexed with HCO3- in the medium to form precipitates. A decrease in pH or HCO3- concentration can promote the conversion of granular Ln to a soluble state, thus enhancing their bioavailability, biotoxicity, and bioaccumulation. At a pH of 5.0 and 0.2 mmol·L-1 HCO3-, where Ln precipitates were not found, the four Ln showed a consistent trend of 96 h-LC50 in zebrafish. These data indicate that the differences in the toxicities of the four Ln in the standard water may be due to differences in the effective states of the individual elements rather than the different toxicities of the elements. Overall, in biological toxicity assessments, Ln can be regarded as a group of elements with additive patterns of toxicity until the differences in their biological toxicity mechanisms are revealed, and the effects of pH and carbonate should be considered.


Subject(s)
Lanthanoid Series Elements , Water Pollutants, Chemical , Animals , Zebrafish , Lanthanoid Series Elements/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Ions , Water
2.
Toxics ; 10(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36136485

ABSTRACT

The expanding applications of rare earth elements (REEs) in various fields have raised concerns about their biosafety. However, previous studies are insufficient to elucidate their toxic effects and mechanisms of action and whether there are uniform or predictable toxicity patterns among REEs. Herein, we investigated the toxic effects of two representative REEs (lanthanum (La) and gadolinium (Gd)) on zebrafish (Danio rerio) through toxicity experiments and transcriptome analysis. The results of the toxicity experiments showed that the two REEs have similar lethality, with half-lethal concentrations (LC50) at micromolar levels and mixed toxicity showing additive effects. Differential expression gene screening and functional group enrichment analysis showed that La and Gd might affect the growth and development of Danio rerio by interfering with some biological molecules. The two REEs showed significant effects on the metabolic pathways of exogenous or endogenous substances, including glutathione sulfotransferase and acetaldehyde dehydrogenase. Moreover, some basic biological processes, such as DNA replication, the insulin signaling pathway, and the p53 signaling pathway, were significantly enriched. Overall, the toxicity patterns of La and Gd may affect some biological processes with different intensities; however, there are many similarities in their toxicity mechanisms and modes of action. The concentrations investigated in this study were comparable to those of REE residues at highly contaminated sites, thus mimicking the ecotoxicological effects at environmentally relevant concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...