Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786029

ABSTRACT

O-linked-ß-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.


Subject(s)
Acetylglucosamine , Liver Diseases , N-Acetylglucosaminyltransferases , Humans , Liver Diseases/metabolism , Liver Diseases/pathology , Glycosylation , Animals , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism , Liver/metabolism , Liver/pathology , Stress, Physiological , Protein Processing, Post-Translational , Signal Transduction
2.
Biology (Basel) ; 12(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37627016

ABSTRACT

The variability observed in the annual seed production of perennial plants can be seen as an indication of changes in the allocation of resources between growth and reproduction, which can be attributed to fluctuations in the environment. However, a significant knowledge gap exists concerning the impacts of nitrogen addition on the interannual seed production patterns of perennial plants. We hypothesized that the addition of nitrogen would impact the annual variations in the seed production of perennial plants, ultimately affecting their overall reproductive efficiency. A multiyear field experiment was conducted to investigate the effects of varying nitrogen supply levels (e.g., 0, 4, and 8 kg N ha-1 yr-1 of N0, N4, and N8) on vegetative and floral traits, pollinator visitation rates, and seed traits over a period of four consecutive years. The results showed that the N0 treatment exhibited the highest levels of seed production and reproductive efficiency within the initial two years. In contrast, the N4 treatment displayed its highest level of performance in these metrics in the second and third years, whereas the N8 treatment showcased its most favorable outcomes in the third and fourth years. Similar patterns were found in the number of flowers per capitulum and the number of capitula per plant. There exists a positive correlation between aboveground biomass and several factors, including the number of flowers per capitulum, the number of capitula per plant, the volume of nectar per capitulum, and the seed production per plant. A positive correlation was found between pollinator visitation and the number of flowers per capitulum or the number of capitula per plant. This implies that the addition of N affected the maintenance of plant aboveground biomass, flower trait stability, pollinator visitation, and, subsequently, the frequency of seed production and reproductive efficiency. Our results suggest that augmenting the nitrogen content in the soil may have the capacity to modify the inherent variability in seed production that is observed across various years and enhance the effectiveness of reproductive processes. These findings have the potential to enhance our comprehension of the impact of nitrogen addition on the reproductive performance of perennial herbaceous plants and the underlying mechanisms of biodiversity in the context of global environmental changes.

3.
Ann Bot ; 132(6): 1131-1144, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37638856

ABSTRACT

BACKGROUND AND AIMS: It has been demonstrated that nitrogen (N) addition alters flower morphology, floral rewards and pollinator performance. However, little is known about the effects of N addition on plant reproduction, including fruit set and seed set during selfing and outcrossing, floral and vegetative traits, and pollinator performance. We hypothesized that N addition would influence fruit set, seed set in selfed and outcrossed flowers, the relationship between vegetative and flower traits, and pollinator performance. METHODS: A 2-year pot experiment was conducted in which Capsicum annuum was exposed to three levels of relatively short-term N supply, i.e. 0 g m-2 (no N addition, as a control), 4 g m-2 (4N) and 16 g m-2 (16N), which are equivalent to about 0-, 1- and 4-fold of the peak local N deposition. We measured flower rewards, flower morphology, flowering phenology, as well as pollinator visitation rate, fruit set and seed set by self- and outcross-fertilization of C. annuum. RESULTS: The four levels of N addition increased plant biomass, biomass allocation to flowers, flower size, stigma-anther separation, nectar production and pollen production, resulting in an increase in pollinator visitation and fruit set. Nevertheless, the control and 16 levels of N addition reduced plant biomass, biomass allocation to flowers, flower size and stigma-anther separation, and nectar and pollen production, and consequently decreased pollinator visitation and fruit set. Exclusion of pollinators and hand-pollination experiments revealed that low levels of N addition were associated with high seed set in outcrossed flowers; however, this trend was reversed in flowers grown in the control and 16N treatments. CONCLUSION: Our results suggest that an optimal level of 4N can enhance the correlation between flower traits, pollinator performance and plant reproduction. Our findings cast new light on the underlying mechanisms of plant-pollinator interactions and plant adaptation to nitrogen deposition.


Subject(s)
Capsicum , Plant Nectar , Reproduction , Pollination , Plants , Flowers/anatomy & histology
4.
Sci Rep ; 12(1): 21802, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526706

ABSTRACT

Annual plants allocate soil nutrients to floral display and pollinator rewards to ensure pollination success in a single season. Nitrogen and phosphorus are critical soil nutrients whose levels are altered by intensive land use that may affect plants' fitness via pollinator attractiveness through floral display and rewards. In a controlled greenhouse study, we studied in cucumbers (Cucumis sativus) how changes in soil nitrogen and phosphorus influence floral traits, including nectar and pollen reward composition. We evaluated how these traits affect bumble bee (Bombus impatiens, an important cucumber pollinator) visitation and ultimately fruit yield. While increasing nitrogen and phosphorus increased growth and floral display, excess nitrogen created an asymptotic or negative effect, which was mitigated by increasing phosphorus. Male floral traits exhibited higher plasticity in responses to changes in soil nutrients than female flowers. At 4:1 nitrogen:phosphorus ratios, male flowers presented increased nectar volume and pollen number resulting in increased bumble bee visitation. Interestingly, other pollinator rewards remained consistent across all soil treatments: male and female nectar sugar composition, female nectar volume, and pollen protein and lipid concentrations. Therefore, although cucumber pollination success was buffered in conditions of nutrient stress, highly skewed nitrogen:phosphorus soil ratios reduced plant fitness via reduced numbers of flowers and reward quantity, pollinator attraction, and ultimately yield.


Subject(s)
Cucumis sativus , Plant Nectar , Bees , Animals , Soil , Pollination/physiology , Flowers/physiology , Plants , Phosphorus , Nitrogen
5.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210423, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35491589

ABSTRACT

Many environmental factors impact plant and pollinator communities. However, variation in soil moisture and how it mediates the plant-pollinator interactions has yet to be elucidated. We hypothesized that long-term variation in soil moisture can exert a strong selective pressure on the floral and vegetative traits of plants, leading to changes in pollinator visitation. We demonstrated that there are three phenotypic populations of Gentiana aristata in our study alpine region in the Qinghai-Tibetan Plateau that vary in floral colour and other traits. Pink (dry habitat) and blue (intermediate habitat) flower populations are visited primarily by bumblebees, and white (wet habitat) flower populations are visited by flies. These patterns of visitation are driven by vegetative and floral traits and are constant when non-endemic plants are placed in the intermediate habitats. Additionally, the floral communities in different habitats vary, with more insect-pollinated forbs in the dry and intermediate habitats versus the wet habitats. Through a common garden and reciprocal transplant experiment, we demonstrated that plant growth traits, pollinator attractiveness and seed production are highest when the plant population is raised in its endemic habitat. This suggests that these plant populations have evolved to pollinator communities associated with habitat differences. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Subject(s)
Magnoliopsida , Animals , Flowers , Plants , Pollination , Soil
6.
Insects ; 11(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085627

ABSTRACT

Pollinator nutritional ecology provides insights into plant-pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species' protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant-pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant-pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.

7.
Ecol Evol ; 7(9): 2947-2955, 2017 05.
Article in English | MEDLINE | ID: mdl-28479994

ABSTRACT

Gentiana leucomelaena manifests dramatic flower color polymorphism, with both blue- and white-flowered individuals (pollinated by flies and bees) both within a population and on an individual plant. Previous studies of this species have shown that pollinator preference and flower temperature change as a function of flower color throughout the flowering season. However, few if any studies have explored the effects of flower color on both pollen viability (mediated by anther temperature) and pollinator preference on reproductive success (seed set) in a population or on individual plants over the course of the entire flowering season. Based on prior observations, we hypothesized that flower color affects both pollen viability (as a function of anther temperature) and pollen deposition (as a function of pollinator preference) to synergistically determine reproductive success during the peak of the flowering season. This hypothesis was tested by field observations and hand pollination experiments in a Tibetan alpine meadow. Generalized linear model and path analyses showed that pollen viability was determined by flower color, flowering season, and anther temperature. Anther temperature correlated positively with pollen viability during the peak of the early flowering season, but negatively affected pollen viability during the peak of the mid- to late flowering season. Pollen deposition was determined by flower color, flowering season (early, or mid- to late season), and pollen viability. Pollen viability and pollen deposition were affected by flower color that in turn affected seed set across the peak of the flowering season (i.e., when the greatest number of flowers were being pollinated). Hand pollination experiments showed that pollen viability and pollen deposition directly influenced seed set. These data collectively indicate that the preference of pollinators for flower color and pollen viability changed during the flowering season in a manner that optimizes successful reproduction in G. leucomelaena. This study is one of a few that have simultaneously considered the effects of both pollen viability and pollen deposition on reproductive success in the same population and on individual plants.

8.
Ann Bot ; 116(6): 899-906, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25921787

ABSTRACT

BACKGROUND AND AIMS: Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. METHODS: A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. KEY RESULTS: Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. CONCLUSIONS: The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant-pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming.


Subject(s)
Asteraceae/metabolism , Insecta/physiology , Plant Nectar/metabolism , Animals , Asteraceae/growth & development , Climate Change , Flowers/growth & development , Flowers/metabolism , Grassland , Plant Leaves/growth & development , Plant Leaves/metabolism , Pollination , Reproduction , Seasons , Symbiosis , Temperature
9.
New Phytol ; 195(2): 427-436, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22591333

ABSTRACT

• Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species.


Subject(s)
Ecosystem , Global Warming , Inflorescence/physiology , Plant Physiological Phenomena , Biomass , Linear Models , Plants/anatomy & histology , Pollination/physiology , Reproduction/physiology , Seeds/growth & development , Species Specificity , Tibet , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...