Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(9): 7487-7503, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38688020

ABSTRACT

Although bactericidal cationic antimicrobial peptides (AMPs) have been well characterized, less information is available about the antibacterial properties and mechanisms of action of nonbactericidal AMPs, especially nonbactericidal anionic AMPs. Herein, a novel anionic antimicrobial peptide (Gy-CATH) with a net charge of -4 was identified from the skin of the frog Glyphoglossus yunnanensis. Gy-CATH lacks direct antibacterial effects but exhibits significantly preventive and therapeutic capacities in mice that are infected with Staphylococcus aureus, Enterobacteriaceae coli, methicillin-resistant Staphylococcus aureus (MRSA), or carbapenem-resistant E. coli (CREC). In vitro and in vivo investigations proved the regulation of Gy-CATH on neutrophils and macrophages involved in the host immune defense against infection. Moreover, Gy-CATH significantly reduced the extent of pulmonary fibrin deposition and prevented thrombosis in mice, which was attributed to the regulatory role of Gy-CATH in physiological anticoagulants and platelet aggregation. These findings show that Gy-CATH is a potential candidate for the treatment of bacterial infection.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/therapeutic use , Anura , Bacterial Infections/drug therapy , Bacterial Infections/prevention & control , Escherichia coli/drug effects , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunologic Factors/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Thrombosis/prevention & control , Thrombosis/drug therapy
2.
Int Immunopharmacol ; 129: 111595, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38295541

ABSTRACT

Cathelicidins are an important family of antimicrobial peptides (AMPs) involved in the innate immunity in vertebrates. The mammalian cathelicidins have been well characterized, but the relationship between structure and function in amphibian cathelicidins is still not well understood. In this study, a novel 29-residue cathelicidin antimicrobial peptide (BugaCATH) was identified from the skin of Bufo gargarizans. Unlike other AMPs, BugaCATH does not display any direct antimicrobial effects in vitro. However, it effectively promotes full-thickness wound repair in mice. Following injury, BugaCATH initiates and expedites the inflammatory stage by recruiting neutrophils and macrophages to the wound site. BugaCATH not only regulates neutrophil phagocytic activity but also stimulates the generation of cytokines (TNF-α, IL-6, and IL-1ß) and chemokines (CXCL1, CXCL2, CCL2, and CCL3) in macrophages and in mice. Furthermore, it promotes macrophage M2 polarization that facilitates the conversion from a pro-inflammatory macrophage-dominated wound environment to an anti-inflammatory one during the mid to late stages, which is crucial for reducing inflammation and effective wound repair. The MAPK (ERK, JNK, and p38) and NF-κB-NLRP3 signaling pathways are involved in the activity. Moreover, BugaCATH directly enhances the migration of keratinocytes and vascular endothelial cells without affecting their proliferation. Notably, BugaCATH significantly improves the proliferation of keratinocytes and endothelial cells in the presence of macrophages. The current study revealed that in addition to proliferation of keratinocytes and endothelial cells, BugaCATH possesses the ability to modulate inflammatory processes during skin injury through its regulatory effect on phagocytes. The combination of these capabilities makes BugaCATH a potent candidate for skin wound therapy.


Subject(s)
Antimicrobial Cationic Peptides , Cathelicidins , Mice , Animals , Endothelial Cells , Wound Healing , Macrophages , Anura , Mammals
3.
ACS Infect Dis ; 9(11): 2252-2268, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37855266

ABSTRACT

Due to excessive use or abuse in the food industry, agriculture, and medicine, many pathogens are developing resistance against conventional antibiotics. Antimicrobial peptides (AMPs) hold promise as effective therapeutic options for the treatment of bacterial infections. Herein, a novel cathelicidin antimicrobial peptide (Zs-CATH) was identified from the tree frog Zhangixalus smaragdinus. Zs-CATH mainly adopted an amphipathic ß-sheet structure in a membrane-mimetic environment. It showed broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria in vitro and significantly protected mice from lethal infections induced by Gram-negative bacteria Escherichia coli ATCC 25922 or Gram-positive bacteria Staphylococcus aureus ATCC 25923 in vivo. In addition, Zs-CATH exerted a strong anti-inflammatory effect by neutralizing lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and promoting macrophage M2 polarization, thus inhibiting the secretion of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß) and enhancing the production of M2 macrophage markers IL-10, IL-4, and CD206. The MAPK and NF-κB inflammatory signaling pathways and transcriptional activator 6 (STAT6) were involved in this effect. In mice, Zs-CATH rapidly recruited neutrophils and monocytes/macrophages to the abdominal cavity but not T and B lymphocytes. Zs-CATH did not exhibit a direct chemoattractant effect on phagocytes but significantly promoted phagocyte migration in the presence of macrophages. Zs-CATH stimulated macrophages to secrete chemokines CXCL1, CXCL2, and CCL2, which mediated the recruitment of phagocytes. Furthermore, Zs-CATH promoted the production of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs), which are oxygen-dependent and oxygen-independent mechanisms of the microbicidal activity of neutrophils, respectively. Zs-CATH exhibited no toxic side effects on mammalian cells and mice. These findings show that in addition to direct antibacterial activity, Zs-CATH also possesses the ability to modulate immune and inflammatory processes during bacterial infection, showing potential for development as anti-infective and/or anti-inflammatory agents.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Animals , Mice , Cathelicidins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Gram-Negative Bacteria , Gram-Positive Bacteria , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophages , Anura , Oxygen/metabolism , Oxygen/pharmacology , Mammals
4.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762285

ABSTRACT

Cancer is one of the major diseases that seriously threaten human life. Traditional anticancer therapies have achieved remarkable efficacy but have also some unavoidable side effects. Therefore, more and more research focuses on highly effective and less-toxic anticancer substances of natural origin. Amphibian skin is rich in active substances such as biogenic amines, alkaloids, alcohols, esters, peptides, and proteins, which play a role in various aspects such as anti-inflammatory, immunomodulatory, and anticancer functions, and are one of the critical sources of anticancer substances. Currently, a range of natural anticancer substances are known from various amphibians. This paper aims to review the physicochemical properties, anticancer mechanisms, and potential applications of these peptides and proteins to advance the identification and therapeutic use of natural anticancer agents.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Peptides , Humans , Animals , Peptides/pharmacology , Amphibians , Esters , Immunomodulation
5.
Protein Pept Lett ; 30(7): 562-573, 2023.
Article in English | MEDLINE | ID: mdl-37231717

ABSTRACT

Due to the rapid evolution of bacterial drug resistance, anti-infective treatment has become a global problem. Therefore, there is an urgent need to develop alternative treatment strategies. Host defense peptides (HDPs) are important components of the natural immune system and are widely distributed in the animal and plant kingdoms. Amphibians, especially their skin, provide a rich source of natural HDPs encoded by genes. These HDPs exhibit not only broad-spectrum antimicrobial activity but also a wide range of immunoregulatory characteristics, including modulation of antiinflammatory and proinflammatory reactions, regulation of specific cellular functions, enhancement of immune chemotaxis, regulation of adaptive immunity, and promotion of wound healing. They also show potent therapeutic effects on infectious and inflammatory diseases caused by pathogenic microorganisms. Thus, in the current review, we summarize the extensive immunomodulatory functions of natural amphibian HDPs, as well as the challenges of clinical development and potential solutions, which have important implications for the development of new anti-infective drugs.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Animals , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Immunity, Innate , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Adjuvants, Immunologic , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use
6.
ACS Infect Dis ; 8(12): 2464-2479, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36378028

ABSTRACT

As antimicrobial resistance poses an increasing threat to public health, it is urgent to develop new antimicrobial agents. In this paper, we identify a novel 30-residue peptide (Nv-CATH, NCNFLCKVKQRLRSVSSTSHIGMAIPRPRG) from the skin of the frog Nanorana ventripunctata, which belongs to the cathelicidin family. Nv-CATH exhibited broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria. Nv-CATH significantly protected mice from lethal infections caused by Staphylococcus aureus. Furthermore, the peptide suppressed excessive and harmful inflammatory responses by repressing the production of NO, IL-6, TNF-α, and IL-1ß. The NF-κB-NLRP3 and MAPK inflammatory signaling pathways were involved in the protection in vitro and in vivo. Nv-CATH also modulated macrophage/monocyte and neutrophil trafficking to the infection site by stimulating CXCL1, CXCL2, and CCL2 production in macrophages. Nv-CATH augmented immunocyte-mediated bacterial killing by modestly promoting neutrophils' phagocytosis and PMA-induced NET formation. Thus, Nv-CATH protects mice against bacterial infection by antimicrobial-immunomodulatory duality. The combination of these two characteristics makes Nv-CATH a promising molecule template for the development of novel antimicrobial and antibiotic-resistant agents.


Subject(s)
Cathelicidins , Staphylococcus aureus , Mice , Animals , Cathelicidins/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria
7.
Elife ; 112022 02 23.
Article in English | MEDLINE | ID: mdl-35195067

ABSTRACT

The roles of bactericidal cathelicidins against bacterial infection have been extensively studied. However, the antibacterial property and mechanism of action of non-bactericidal cathelicidins are rarely known. Herein, a novel naturally occurring cathelicidin (PopuCATH) from tree frog (Polypedates puerensis) did not't show any direct anti-bacterial activity in vitro. Intriguingly, intraperitoneal injection of PopuCATH before bacterial inoculation significantly reduced the bacterial load in tree frogs and mice, and reduced the inflammatory response induced by bacterial inoculation in mice. PopuCATH pretreatment also increased the survival rates of septic mice induced by a lethal dose of bacterial inoculation or cecal ligation and puncture (CLP). Intraperitoneal injection of PopuCATH significantly drove the leukocyte influx in both frogs and mice. In mice, PopuCATH rapidly drove neutrophil, monocyte/macrophage influx in mouse abdominal cavity and peripheral blood with a negligible impact on T and B lymphocytes, and neutrophils, monocytes/macrophages, but not T and B lymphocytes, were required for the preventive efficacy of PopuCATH. PopuCATH did not directly act as chemoattractant for phagocytes, but PopuCATH obviously drove phagocyte migration when it was cultured with macrophages. PopuCATH significantly elicited chemokine/cytokine production in macrophages through activating p38/ERK mitogen-activated protein kinases (MAPKs) and NF-κB p65. PopuCATH markedly enhanced neutrophil phagocytosis via promoting the release of neutrophil extracellular traps (NETs). Additionally, PopuCATH showed low side effects both in vitro and in vivo. Collectively, PopuCATH acts as a host-based immune defense regulator that provides prophylactic efficacy against bacterial infection without direct antimicrobial effects. Our findings reveal a non-bactericidal cathelicidin which possesses unique anti-bacterial action, and highlight the potential of PopuCATH to prevent bacterial infection.


Subject(s)
Cathelicidins/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages/drug effects , Phagocytes/drug effects , Animals , Anura , Bacteria/drug effects , Bacterial Infections/prevention & control , Bone Marrow Cells , Cathelicidins/chemistry , Cell Line , Chemotaxis , Female , Fungi/drug effects , Humans , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Phagocytes/physiology , Rats
8.
Peptides ; 150: 170712, 2022 04.
Article in English | MEDLINE | ID: mdl-34929265

ABSTRACT

Cathelicidins are diverse effector molecules in the vertebrate immune system and are related to immune regulation, inflammatory response, wound healing, and blood vessel formation. However, little is known about their free radical scavenging ability, especially in vivo. In this study, a cathelicidin molecule (cathelicidin-NV, ARGKKECKDDRCRLLMKRGSFSYV) previously identified from the spot-bellied plateau frog (Nanorana ventripunctata) (Anura, Dicroglossidae, Dicroglossinae) by us was shown to alleviate ultraviolet B (UVB)-induced skin photoaging in mice. Cathelicidin-NV effectively suppressed cytotoxicity, DNA fragmentation, apoptosis and reduced the protein expression levels of JNK, c-Jun, and MMP-1, which are involved in the regulation of collagen degradation in HaCaT cells induced by UVB irradiation. Furthermore, cathelicidin-NV also scavenged UVB-induced intracellular reactive oxygen species (ROS). Taken together, cathelicidin-NV directly scavenged excessive intracellular ROS to protect HaCaT cells, and subsequently alleviated UVB-induced skin photoaging. This study extends reports on the antioxidant function of the cathelicidin family. In addition, the properties of cathelicidin-NV make it an excellent candidate for the prevention and treatment of UV-induced skin photoaging.


Subject(s)
Skin Aging , Animals , Antimicrobial Cationic Peptides , Anura/metabolism , HaCaT Cells , Humans , Mice , Reactive Oxygen Species/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects , Cathelicidins
9.
Protein Pept Lett ; 28(11): 1220-1229, 2021.
Article in English | MEDLINE | ID: mdl-34493183

ABSTRACT

In recent years, bioactive peptide drugs have attracted growing attention due to the increasing difficulty in developing new drugs with novel chemical structures. In addition, many diseases are linked to excessive oxidation in the human body. Therefore, the role of peptides with antioxidant activity in counteracting diseases related to oxidative stress is worth exploring. Amphibians are a major repository for bioactive peptides that protect the skin from biotic and abiotic stresses, such as microbial infection and radiation injury. We characterized the first amphibian- derived gene-encoded antioxidant peptides in 2008. Since then, a variety of antioxidant peptides have been detected in different amphibian species. In this work, the physicochemical properties of antioxidant peptides identified from amphibians are reviewed for the first time, particularly acquisition methods, amino acid characteristics, antioxidant mechanisms, and application prospects. This review should provide a reference for advancing the identification, structural analysis, and potential therapeutic value of natural antioxidant peptides.


Subject(s)
Amphibian Proteins/therapeutic use , Antioxidants/therapeutic use , Infections/drug therapy , Oxidative Stress/drug effects , Peptides/therapeutic use , Radiation Injuries/drug therapy , Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Amphibians , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Humans , Peptides/chemistry , Peptides/metabolism , Species Specificity
10.
Front Pharmacol ; 12: 761011, 2021.
Article in English | MEDLINE | ID: mdl-35126108

ABSTRACT

Although many bioactive peptides have been identified from the frog skins, their protective effects and the molecular mechanisms against skin photodamage are still poorly understood. In this study, a novel 20-residue peptide (antioxidin-NV, GWANTLKNVAGGLCKMTGAA) was characterized from the skin of plateau frog Nanorana ventripunctata. Antioxidin-NV obviously decreased skin erythema, thickness and wrinkle formation induced by Ultraviolet (UV) B exposure in hairless mice. In UVB-irradiated keratinocytes (HaCaT cells) and hairless mice, it effectively inhibited DNA damage through reducing p-Histone H2A.X (γH2AX) expression, alleviated cell apoptosis by decreasing the expression of apoptosis-specific protein (cleaved caspase 3), and reduced interleukin-6 (IL-6) production via blocking UVB-activated Toll-like receptor 4 (TLR4)/p38/JNK/NF-κB signaling. In UVB-irradiated human skin fibroblasts (HSF cells) and hairless mice, it effectively restored HSF cells survival rate, and rescued α-SMA accumulation and collagen (especially type I collagen) production by restoring transforming growth factor-ß1 (TGF-ß1)/Smad2 signaling. We found that antioxidin-NV directly and rapidly scavenged intracellular and mitochondrial ROS in HaCaT cells upon UVB irradiation, and quickly eliminated the artificial free radicals, 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+). Taken together, antioxidin-NV directly and rapidly scavenged excessive ROS upon UVB irradiation, subsequently alleviated UVB-induced DNA damage, cell apoptosis, and inflammatory response, thus protecting against UVB-induced skin photoaging. These properties makes antioxidin-NV an excellent candidate for the development of novel anti-photoaging agent.

11.
Front Immunol ; 10: 2421, 2019.
Article in English | MEDLINE | ID: mdl-31681309

ABSTRACT

Wound healing-promoting peptides exhibit excellent therapeutic potential in regenerative medicine. However, amphibian-derived wound healing-promoting peptides and their mechanism of action remain to be further elucidated. We hereby characterized a wound healing-promoting peptide, Ot-WHP, derived from Chinese concave-eared frog Odorrana tormota. It efficiently promoted wound healing in a mouse model of full-thickness wounds. Ot-WHP significantly increased the number of neutrophils in wounds, and modestly promoted neutrophil phagocytosis and phorbol myristate acetate (PMA)-induced neutrophil extracellular trap formation. Ot-WHP also significantly increased the number of macrophages in wound sites, and directly induced chemokine, cytokine and growth factor production in macrophages by activating mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways. Of note, Ot-WHP did not act as a chemoattractant for neutrophils and macrophages, suggesting its chemotactic activity depends on inducing chemoattractant production in macrophages. Besides, Ot-WHP directly promoted keratinocyte migration by enhancing integrin expression and cell adhesion. In addition, Ot-WHP significantly enhanced the cross-talk between macrophages and keratinocytes/fibroblasts by promoting keratinocyte/fibroblast proliferation, and fibroblast-to-myofibroblast transition despite having no direct effects on keratinocyte/fibroblast proliferation, and fibroblast differentiation. Collectively, Ot-WHP directly elicited the production of regulatory factors in macrophages, consequently initiated and accelerated the inflammatory phase by recruiting neutrophils and macrophages to wounds, and in turn enhanced the cross-talk between macrophages and keratinocytes/fibroblasts, additionally promoted keratinocyte migration, and finally promoted cutaneous wound healing. Our findings provide a promising immunomodulator for acute wound management and new clues for understanding the mechanism of action of amphibian-derived wound healing-promoting peptides.


Subject(s)
Anura , Immunologic Factors/pharmacology , Peptides/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Biomarkers/metabolism , Chemotaxis, Leukocyte/immunology , Collagen/metabolism , Cytokines/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Keratinocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Myofibroblasts/metabolism , NF-kappa B/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Peptides/chemistry , Peptides/isolation & purification , Signal Transduction/drug effects , Skin/injuries , Skin/pathology , Wound Healing/drug effects
12.
Parasit Vectors ; 11(1): 470, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30107813

ABSTRACT

BACKGROUND: Mosquitoes are armed with physiologically active compounds to suppress the host immunity including host inflammatory reaction. However, the specific anti-inflammatory components in mosquitoes remain unknown. RESULTS: By searching for the immunomodulatory molecules from the mosquito Aedes aegypti (Diptera: Culicidae) at NCBI for anti-inflammatory function, five cecropins (for short in this study: AeaeCec1, 2, 3, 4 and 5) were selected. AeaeCec1-5 efficiently inhibited the expression of inducible nitric oxide synthase (iNOS), nitrite, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and human peripheral blood mononuclear cells (PBMCs) with low toxicity to mammalian cells. Among the five analogues, AeaeCec5 had the strongest anti-inflammatory activity, and generated an additive effect with other AeaeCec peptides. In a mouse model of endotoxin shock, AeaeCec1-5 effectively reduced TNF-α, IL-1ß and IL-6 expression in lungs, serum and peritoneal lavage and correspondingly reduced lung damage and edema, with AeaeCec5 showing the best protection. In mice infected with Escherichia coli or Pseudomonas aeruginosa, administration of AeaeCec5 reduced the production of TNF-α, IL-1ß and IL-6 and correspondingly reduced lung tissue damage. These effects of Ae. aegypti AeaeCec1-5 were attributed to an efficient inhibition of the activation of mitogen-activated protein kinases (MAPKs) and transcriptional nuclear factor-κB (NF-κB) signaling pathways, as well as partial neutralization of LPS. CONCLUSIONS: The current work characterized the specific anti-inflammatory agents in Ae. aegypti and provided AeaeCec5 as a potent anti-endotoxin peptide that could serve as the basis for the development of anti-inflammatory therapy.


Subject(s)
Aedes/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Cecropins/immunology , Shock, Septic/prevention & control , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Bacterial Infections/drug therapy , Bacterial Infections/immunology , Cecropins/administration & dosage , Cecropins/chemistry , Cecropins/pharmacology , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Immunologic Factors/pharmacology , Interleukin-1beta/drug effects , Interleukin-1beta/genetics , Interleukin-6/genetics , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Mice , Mitogen-Activated Protein Kinases/drug effects , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/genetics , Shock, Septic/immunology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/genetics
13.
Biochem J ; 475(17): 2785-2799, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30045878

ABSTRACT

Although cathelicidins in mammals have been well characterized, little is known about the function of cathelicidin in amphibians. In the present study, a novel 24-residue peptide (cathelicidin-NV, ARGKKECKDDRCRLLMKRGSFSYV) belonging to the cathelicidin family was identified from the skin of the plateau frog Nanorana ventripunctata Cathelicidin-NV showed strong wound healing-promoting activity in a murine model with a full-thickness dermal wound. It directly enhanced the proliferation of keratinocyte cells, resulting in accelerated re-epithelialization of the wound site. Cathelicidin-NV also promoted the proliferation of fibroblasts, the differentiation of fibroblasts to myofibroblasts and collagen production in fibroblasts, which are implicated in wound contraction and repair processes. Furthermore, cathelicidin-NV promoted the release of monocyte chemoattractant protein-1, tumor necrosis factor-α, vascular endothelial growth factor and transforming growth factor-ß1 in vivo and in vitro, which are essential in the wound-healing processes such as migration, proliferation and differentiation. The MAPK (ERK, JNK and p38) signaling pathways were involved in the wound healing-promoting effect. Additionally, unlike other cathelicidins, cathelicidin-NV did not have any direct effect on microbes and showed no cytotoxicity and hemolytic activity toward mammalian cells at concentrations up to 200 µg/ml. This current study may facilitate the understanding of the cellular and molecular events that underlie quick wound healing in N. ventripunctata In addition, the combination of these properties makes cathelicidin-NV an excellent candidate for skin wound therapeutics.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , MAP Kinase Signaling System/drug effects , Skin , Wound Healing/drug effects , Animals , Anura , Cytokines/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Monocytes/metabolism , RAW 264.7 Cells , Skin/injuries , Skin/metabolism , Skin/pathology , Cathelicidins
14.
Amino Acids ; 49(9): 1571-1585, 2017 09.
Article in English | MEDLINE | ID: mdl-28593346

ABSTRACT

As of February 2017, approximately 7639 amphibian species have been described in the AmphibiaWeb database. However, only 20 cathelicidin-like antimicrobial peptides have been identified to date from 10 amphibian species. Half of these peptides were identified from genome sequences and have not yet been functionally characterized. In this study, a novel cathelicidin-like peptide designated cathelicidin-PP was purified from the skin of tree frog Polypedates puerensis. Cathelicidin-PP is a 32 residue peptide of sequence ASENGKCNLLCLVKKKLRAVGNVIKTVVGKIA. Circular dichroism spectroscopy indicated that cathelicidin-PP mainly adopts a ß-sheet structure in membrane-mimetic solutions. Cathelicidin-PP exhibits potent antimicrobial activity against bacteria and fungi, especially Gram-negative bacteria. Meanwhile, it shows low cytotoxicity toward mammalian cells. Scanning electron microscopy analysis indicated that cathelicidin-PP kills bacteria through the disruption of the bacterial cell membrane integrity. Furthermore, cathelicidin-PP exerts significant anti-inflammatory functions by inhibiting the lipopolysaccharide (LPS)-mediated generation of nitric oxide and pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1ß, and interleukin-6. The MAPKs (ERK, JNK, and p38) and NF-κB signaling pathways are involved in the anti-inflammatory effect. Cathelicidin-PP caused partial neutralization of LPS in a dose-dependent manner. Quantitative PCR indicated that infection of tree frogs with bacteria causes increased expression of cathelicidin-PP in immune-related tissues. Taken together, cathelicidin-PP is the first identified cathelicidin-like peptide from tree frogs. Our findings demonstrate that in addition to direct bactericidal capacity, cathelicidin-PP also possesses immunomodulatory properties, including partial neutralization of LPS, and inhibiting the production of inflammatory cytokines.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Immunologic Factors/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Skin/chemistry , Amino Acid Sequence , Animals , Anti-Inflammatory Agents/isolation & purification , Antimicrobial Cationic Peptides/isolation & purification , Anura , Cloning, Molecular , Erythrocytes/drug effects , Gene Expression/drug effects , Hemolysis/drug effects , Immunologic Factors/isolation & purification , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/immunology , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Mice , Mice, Inbred C57BL , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Primary Cell Culture , Protein Conformation, beta-Strand , Rabbits , Skin/immunology , Skin/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Cathelicidins
15.
Parasit Vectors ; 8: 556, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26496724

ABSTRACT

BACKGROUND: A diverse group of physiologically active peptides/proteins are present in the salivary glands of horsefly Tabanus yao (Diptera, Tabanidae) that facilitate acquisition of blood meal. However, their roles in the regulation of local inflammation remains poorly understood. METHODS: Induction expression profiles of immune-related molecules in the salivary glands of T. yao was analyzed by quantitative PCR (qPCR) after bacterial feeding. A significantly up-regulated molecule (cecropin-TY1) was selected for anti-inflammatory assay in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. The transcription levels of inducible NO synthase (iNOS) and pro-inflammatory cytokines were quantified by qPCR. Nitric oxide (NO) production was determined by Griess reagent. Pro-inflammatory cytokine production was determined by an enzyme-linked immunosorbent assay (ELISA). The inflammatory signals were assayed by Western blotting analysis. The secondary structure of cecropin-TY1 was measured by Circular dichroism (CD) spectroscopy. Interaction of cecropin-TY1 with LPS was evaluated by the dissociation of fluorescein isothiocyanate (FITC)-conjugated LPS aggregates and neutralization of LPS determined by a quantitative Chromogenic End-point Tachypleus amebocyte lysate (TAL) assay kit. Homology modeled structure analysis and mutation of key residues/structures were performed to understand its structure-activity relationship. RESULTS: Cecropin-TY1 was demonstrated to possess high anti-inflammatory activity and low cytotoxicity toward mouse macrophages. In LPS-stimulated mouse peritoneal macrophage, addition of cecropin-TY1 significantly inhibited the production of nitric oxide (NO) and pro-inflammatory cytokines. Further study revealed that cecropin-TY1 inhibited inflammatory cytokine production by blocking activation of mitogen-activated protein kinases (MAPKs) and transcriptional nuclear factor-κB (NF-κB) signals. Cecropin-TY1 even interacted with LPS and neutralized LPS. The secondary structure analysis revealed that cecropin-TY1 adopted unordered structures in hydrophobic environment but converted to α-helical confirmation in membrane mimetic environments. Homology modeled structure analysis demonstrated that cecropin-TY1 adopted two α-helices (Leu3-Thr24, Ile27-Leu38) linked by a hinge (Leu25-Pro26) and the structure surface was partly positively charged. Structure-activity relationship analysis indicated that several key residues/structures are crucial for its anti-inflammatory activity including α-helices, aromatic residue Trp2, positively charged residues Lys and Arg, hinge residue Pro26 and N-terminal amidation. CONCLUSIONS: We found a novel anti-inflammatory function of horsefly-derived cecropin-TY1 peptide, laying groundwork for better understanding the ectoparasite-host interaction of horsefly with host and highlighting its potency in anti-inflammatory therapy for sepsis and endotoxin shock caused by Gram-negative bacterial infections.


Subject(s)
Anti-Inflammatory Agents/metabolism , Cecropins/metabolism , Diptera/physiology , Salivary Proteins and Peptides/metabolism , Animals , Blotting, Western , Cecropins/chemistry , Cecropins/genetics , Cells, Cultured , Circular Dichroism , Cytokines/biosynthesis , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Host-Parasite Interactions , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Mice , Nitric Oxide Synthase Type II/biosynthesis , Protein Binding , Protein Conformation , Real-Time Polymerase Chain Reaction , Salivary Glands/chemistry , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/genetics , Transcription, Genetic
16.
Parasit Vectors ; 8: 561, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26497304

ABSTRACT

BACKGROUND: Several antimicrobial peptides (AMPs) belonging to the cecropin family have been identified from the salivary glands of different black fly species, however, the immunological functions for these molecules were poorly understood. METHODS: A novel cecropin-like antimicrobial peptide (SibaCec) was purified using reverse phase high-performance liquid chromatography (RP-HPLC) from the salivary glands of the black fly Simulium bannaense. The amino acid sequence of SibaCec was determined by a combination method of automated Edman degradation and cDNA sequencing. The morphologic changes of Gram-negative bacteria Escherichia coli treated with SibaCec were assessed by scanning electron microscopy (SEM). Quantitative PCR (qPCR) was performed to analyze the mRNA expression of the inducible NO synthase (iNOS) and pro-inflammatory cytokines. Nitric oxide (NO) generation was examined using a Griess assay and the secretion of pro-inflammatory cytokines was determined by an enzyme-linked immunosorbent assay (ELISA). The activation of extracellular signal-regulated kinase (ERK), p38, and the nuclear translocation of nuclear factor-kappaB (NF-κB) were assessed by Western blotting analysis. Circular dichroism (CD) spectroscopy was performed to evaluate the secondary structure of SibaCec in solvent environment. Interaction of SibaCec with lipopolysaccharide (LPS) was studied using fluorescein isothiocyanate (FITC)- conjugated LPS aggregates. Neutralization of LPS by SibaCec was assayed with the chromogenic limulus amebocyte lysate (LAL) test. qPCR was also used to analyze the expression of SibaCec mRNA in the salivary glands of insects after oral infection with the bacteria E.coli. RESULTS: SibaCec possessed potent antimicrobial activity against Gram-negative bacteria, and showed low cytotoxicity toward mammalian cells. SEM analysis indicated that SibaCec killed bacteria through the disruption of cell membrane integrity. Furthermore, SibaCec significantly inhibited lipopolysaccharide (LPS)-induced production of NO and pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interferon-1ß (IL-1ß) and interferon-6 (IL-6) by blocking the activation of MAPKs and NF-κB signaling pathways. It mainly adopted an α-helix conformation in membrane-mimetic environments. SibaCec could interact and neutralize LPS. Infection of black flies with bacteria caused an upregulation of the expression of SibaCec. CONCLUSIONS: These results demonstrated that in addition to the bactericidal capacity, SibaCec can function as immune regulator, inhibiting host secretion of inflammatory factors.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/metabolism , Cecropins/isolation & purification , Cecropins/metabolism , Simuliidae/physiology , Amino Acid Sequence , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/metabolism , Anti-Inflammatory Agents/chemistry , Blotting, Western , Cecropins/chemistry , Cecropins/genetics , Chromatography, High Pressure Liquid , Circular Dichroism , Cytokines/biosynthesis , Enzyme-Linked Immunosorbent Assay , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Gene Expression Profiling , Insecta , Lipopolysaccharides/antagonists & inhibitors , Microscopy, Electron, Scanning , Molecular Sequence Data , Nitric Oxide Synthase Type II/biosynthesis , Protein Conformation , Real-Time Polymerase Chain Reaction , Salivary Glands/chemistry , Sequence Analysis, DNA , Signal Transduction
17.
Amino Acids ; 47(7): 1301-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25792112

ABSTRACT

A variety of antimicrobial peptides against infection have been identified from the skin of amphibians. However, knowledge on amphibian defensins is very limited. A novel anionic defensin designated PopuDef was purified from the skin of tree frog Polypedates puerensis, and the cDNA encoding PopuDef precursor was cloned from the skin cDNA library. The amino acid sequence of PopuDef (net charge: -2, pI: 4.75) shared the highest identity of 57 % (25/44) with the salamander defensin CFBD-1 (net charge: 0, pI: 6.14) from urodela amphibians. PopuDef showed moderate antimicrobial activities against P. aeruginosa and S. aureus (MICs are 19.41 and 17.25 µM, respectively), and relatively weak activities against E. coli and B. subtilis (MICs are 38.82 and 43.14 µM, respectively). Tissue distribution analysis indicated that relatively high expression level of PopuDef mRNA was observed in immune-related tissues including skin, gut, lung and spleen. Furthermore, the expression level of PopuDef was significantly upregulated in these tissues after tree frogs were infected with different bacteria strains mentioned above. Interestingly, the induction of PopuDef challenged with E. coli or B. subtilis, which was less sensitive to PopuDef, was much higher than that did with P. aeruginosa or S. aureus. These findings highlight the key role of PopuDef in innate immunity against infection. To our knowledge, PopuDef is the first anionic defensin characterized from amphibians.


Subject(s)
Amphibian Proteins/pharmacology , Anti-Bacterial Agents/pharmacology , Anura/metabolism , Defensins/pharmacology , Amino Acid Sequence , Amphibian Proteins/chemistry , Amphibian Proteins/physiology , Animals , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Base Sequence , Cloning, Molecular , Defensins/chemistry , Defensins/physiology , Escherichia coli/drug effects , Gene Expression , Microbial Sensitivity Tests , Molecular Sequence Data , Organ Specificity , Phylogeny , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
18.
Parasit Vectors ; 8: 71, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25649358

ABSTRACT

BACKGROUND: Black flies (Diptera: Simuliidae) are haematophagous insects that can cause allergic reactions and act as vectors of pathogens. Although their saliva has been thought to contain a diverse array of physiologically active molecules, little information is available on antimicrobial factors in black fly salivary glands, especially no defensins have been reported so far. METHODS: A novel cationic defensin designated SibaDef was purified using reverse phase high-performance liquid chromatography (RP-HPLC) from the salivary glands of the black fly Simulium bannaense. The amino acid sequence of SibaDef was determined by a combination method of automated Edman degradation and cDNA sequencing. The morphologic changes of Gram-positive bacteria Staphylococcus aureus or Bacillus subtilis treated with SibaDef were assessed by scanning electron microscopy (SEM). Quantitative PCR (qPCR) was performed to analyze the expression of SibaDef mRNA in whole bodies of insects after oral infection with the bacteria S. aureus or B. subtilis. RESULTS: Surprisingly, the phylogenetic analysis of defensin-related amino acid sequences demonstrated that SibaDef is most closely related to defensins from the human body louse Pediculus humanus corporis (Anoplura: Pediculidae), rather than to other dipteran defensins. SibaDef showed potent antimicrobial activities against Gram-positive bacteria with minimal inhibitory concentrations (MICs) ranging from 0.83 µM to 2.29 µM. SEM analysis indicated that SibaDef killed microorganisms through the disruption of cell membrane integrity. The transcript levels of SibaDef in the bacteria-immunized flies increased with the time course, reaching maximum at 36 h and then slowly decreased from that time point. CONCLUSIONS: Our results indicate that SibaDef is involved in the innate humoral response of the black fly S. bannaense, and it might play a significant role in the defence against microorganisms in both sugar and blood meals.


Subject(s)
Defensins/isolation & purification , Insect Proteins/isolation & purification , Simuliidae/chemistry , Amino Acid Sequence , Animals , Base Sequence , Defensins/chemistry , Defensins/genetics , Defensins/immunology , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/immunology , Molecular Sequence Data , Phylogeny , Salivary Glands/chemistry , Salivary Glands/immunology , Sequence Alignment , Simuliidae/classification , Simuliidae/genetics , Simuliidae/immunology
19.
FASEB J ; 28(9): 3919-29, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24868009

ABSTRACT

Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 µg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor ß1 (TGF-ß1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.


Subject(s)
Peptide Fragments/isolation & purification , Peptide Fragments/pharmacology , Regeneration/physiology , Skin/metabolism , Urodela/metabolism , Wound Healing/physiology , Animals , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Flow Cytometry , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunoenzyme Techniques , Interleukin-6/genetics , Interleukin-6/metabolism , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Peptide Fragments/chemistry , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Skin/growth & development , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Urodela/growth & development , Wound Healing/drug effects
20.
PLoS One ; 9(3): e92082, 2014.
Article in English | MEDLINE | ID: mdl-24647450

ABSTRACT

Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-ß) are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2]) containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1) the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2) the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3) tissue remodeling phase, by promoting the release of transforming TGF-ß1 and interleukin 6 (IL-6) in murine macrophages and activating mitogen-activated protein kinases (MAPK) signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-ß), tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.


Subject(s)
Peptides/pharmacology , Wound Healing/drug effects , Amino Acid Sequence , Animals , Cell Differentiation/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytokines/metabolism , Epithelium/drug effects , Epithelium/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Molecular Sequence Data , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Peptides/chemistry , Skin/drug effects , Skin/pathology , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...