Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 May.
Article in English | MEDLINE | ID: mdl-38599426

ABSTRACT

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.


Subject(s)
Alginates , Capsules , Digestion , Freeze Drying , Microbial Viability , Probiotics , Alginates/chemistry , Microbial Viability/drug effects , Gastrointestinal Tract/microbiology , Trehalose/chemistry , Soybean Oil/chemistry , Coconut Oil/chemistry
2.
Food Chem ; 440: 137522, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38128430

ABSTRACT

The milk fat globules in infant formula (IF) are encapsulated by a component known as milk fat globule membrane (MFGM). However, it is currently unclear whether the improved emulsion stability of MFGM can have a profound effect on the finished IF. Therefore, this study investigated the effects of MFGM on the particle size, stability, rheology, and microstructure of emulsions prepared by dairy ingredients via wet mixing. Further, IF were processed using such emulsions, the physicochemical properties, surface composition of the powders were examined. The results showed that MFGM reduced the particle size of the emulsion, increased the viscosity, and improved the microstructure of the MFGM. Furthermore, MFGM reduced the moisture content of the powder, increased the glass transition temperature, and reduced the presence of surface fat. In conclusion, the addition of MFGM enhance the finished powder stability by improving the emulsion stability prepared during IF manufacturing.


Subject(s)
Glycolipids , Glycoproteins , Infant Formula , Humans , Infant , Emulsions , Powders , Infant Formula/chemistry , Glycolipids/chemistry , Lipid Droplets
SELECTION OF CITATIONS
SEARCH DETAIL
...