Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 213: 110986, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810789

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI), a prevalent stroke-related complication, can lead to severe brain damage. Inflammation is a crucial factor in CIRI pathogenesis, and the complement component 3a receptor (C3aR) could be a key mediator in the post-CIRI inflammatory cascade. In this study, the role of C3aR in CIRI was investigated utilizing a middle cerebral artery occlusion (MCAO) model in C3aR knockout (KO) mice. Magnetic resonance imaging (MRI) and neurofunctional assessments revealed that C3aR KO mice exhibited significantly diminished cerebral infarction and improved neurological impairments. Consequently, the focus shifted to searching for a small molecule antagonist of C3aR. JR14a, a new potent thiophene antagonist of C3aR, was injected intraperitoneally into mice 1-h post-MCAO model implementation. The mass spectrometry (MS) results indicated the ability of JR14a to penetrate the blood-brain barrier. Subsequent TTC staining and neurofunctional assessments revealed the efficacy of JR14a in reducing cerebral infarct volume and neurological impairment following MCAO. In addition, immunofluorescence (IF) and immunohistochemistry (IHC) demonstrated attenuated microglial activation, neutrophil infiltration, and blood-brain barrier disruption by JR14a in the MCAO model. Furthermore, enzyme-linked immunosorbent assay (ELISA) and Western blotting supported the role of JR14a in downregulating the expression levels of C3aR, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), as well as the phosphorylation of p65. In conclusion, the findings suggested that C3aR could be a potential therapeutic target for CIRI, and JR14a emerged as a promising treatment candidate.


Subject(s)
Infarction, Middle Cerebral Artery , Mice, Knockout , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Mice , Male , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Mice, Inbred C57BL , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Receptors, Complement/antagonists & inhibitors , Receptors, Complement/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Disease Models, Animal , Microglia/drug effects , Microglia/metabolism , Thiophenes/pharmacology , Thiophenes/therapeutic use , Neuroprotective Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...