Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Probiotics Antimicrob Proteins ; 15(1): 74-81, 2023 02.
Article in English | MEDLINE | ID: mdl-34676501

ABSTRACT

Mastitis, common inflammation of the mammary gland, caused by various factors, is a challenge for the dairy industry. Escherichia coli (E. coli), a Gram-negative opportunistic pathogen, is one of the major pathogens causing clinical mastitis which is characterized by reduced milk production and recognizable clinical symptoms. Bacillus subtilis (B. subtilis) has been reported to have the ability to limit the colonization of pathogens and has immune-stimulatory effects on epithelial cells. The purpose of this study was to explore the preventive role of B. subtilis H28 on E. coli-induced mastitis in mice. The mastitis model was established by nipple duct injection of E. coli into mice, while B. subtilis H28 was utilized 2 h before E. coli injection. Furthermore, pathological changes in the mammary gland were evaluated by hematoxylin-eosin (H&E) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6). We also observed changes in Toll-like receptor 4 (TLR4), nuclear transcription factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) expression by using western blotting. The results revealed that B. subtilis H28 pretreatment reduced neutrophil infiltration in the mammary gland tissues, significantly decreased the secretion of TNF-α, IL-1ß, and IL-6, and downregulated the activation of TLR4 and the phosphorylation of p65 NF-κB, IκB, p38, and ERK. In conclusion, our results indicated that B. subtilis H28 can ameliorate E. coli-induced mastitis and suggest a new method for the prevention of mastitis.


Subject(s)
Mastitis , NF-kappa B , Humans , Female , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Bacillus subtilis/metabolism , Toll-Like Receptor 4/metabolism , Escherichia coli/metabolism , Tumor Necrosis Factor-alpha , Interleukin-6/metabolism , MAP Kinase Signaling System , Lipopolysaccharides/pharmacology
2.
Food Funct ; 13(13): 7144-7156, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35699056

ABSTRACT

Ketosis, a common metabolic disorder in dairy cattle, occurs during early lactation and leads to higher concentrations of non-esterified fatty acids (NEFAs) and ß-hydroxybutyrate (BHBA), and is generally believed to be caused by excessive negative energy balance (NEB). Propylene glycol (PG), a gluconeogenic precursor, has been proved to promote gluconeogenesis and alleviate NEB. Oral administration of PG is widely considered one of the most effective therapeutic options for treating ketosis. Thus, in this study, we assessed the effects of PG on rumen microbiota via 16S rDNA analysis. The results show that one dose (500 mL) of PG treatment could rapidly reduce the blood BHBA level in ketosis cows by increasing the level and proportion of propionate in the rumen. Meanwhile, PG also had certain effects on the rumen bacterial community. Compared with before treatment, the relative abundances of Prevotella, Succinivibrionaceae_UCG-001 and Prevotellaceae_UCG-001 increased significantly, while those of Christensenellaceae_R-7_group, Butyrivibrio and Saccharofermentans significantly decreased. LEfSe analysis revealed that after PG treatment, only Rikenellaceae_RC9_gut_group was enriched in the rumen fluid at the genus level. In conclusion, the present study indicates that ketosis is accompanied by alterations in the rumen microbiota community. PG treatment changes the composition of rumen microbiota to a healthier state and contributes to rapid recovery from ketosis. These results support the usage of PG for treating such metabolic diseases that challenge high-yield cows due to their minimized cost and maximized safety without any adverse events.


Subject(s)
Cattle Diseases , Ketosis , Microbiota , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/therapeutic use , Animals , Cattle , Cattle Diseases/drug therapy , Diet , Female , Ketosis/drug therapy , Ketosis/veterinary , Lactation , Milk/metabolism , Propylene Glycol , Rumen/metabolism , Rumen/microbiology
3.
Microbiol Spectr ; 10(1): e0251221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196821

ABSTRACT

Mastitis, a highly prevalent disease in dairy cows, is commonly caused by local infection of the mammary gland. Our previous studies have suggested that the gut microbiota plays an important role in the development of mastitis in mice. However, the effects of rumen microbiota on bovine mastitis and the related mechanisms remain unclear. In this study, we assessed the effects and mechanisms of rumen microbiota on bovine mastitis based on the subacute rumen acidosis (SARA) model induced by feeding Holstein Frisian cows a high-concentrate diet for 8 weeks. Then, the inflammatory responses in the mammary gland and the bacterial communities of rumen fluid, feces, and milk were analyzed. The results showed that SARA induced mastitis symptoms in the mammary gland; activated a systemic inflammatory response; and increased the permeability of the blood-milk barrier, gut barrier, and rumen barrier. Further research showed that lipopolysaccharides (LPS), derived from the gut of SARA cows, translocated into the blood and accumulated in the mammary glands. Furthermore, the abundance of Stenotrophomonas was increased in the rumen of SARA cows, and mastitis was induced by oral administration of Stenotrophomonas in lactating mice. In conclusion, our findings suggested that mastitis is induced by exogenous pathogenic microorganisms as well as by endogenous pathogenic factors. Specifically, the elevated abundance of Stenotrophomonas in the rumen and LPS translocation from the rumen to the mammary gland were important endogenous factors that induced mastitis. Our study provides a foundation for novel therapeutic strategies that target the rumen microbiota in cow mastitis. IMPORTANCE Mastitis is a common and frequently occurring disease of humans and animals, especially in dairy farming, which has caused huge economic losses and brought harmful substance residues, drug-resistant bacteria, and other public health risks. The traditional viewpoint indicates that mastitis is mainly caused by exogenous pathogenic bacteria infecting the mammary gland. Our study found that the occurrence of mastitis was induced by the endogenous pathway. Evidence has shown that rumen-derived LPS enters the mammary gland through blood circulation, damaging the blood-milk barrier and then inducing inflammation of the mammary gland in cows. In addition, a higher abundance of Stenotrophomonas in the rumen was closely associated with the development of mastitis. This study provides a basis for novel therapeutic strategies that exploit the rumen microbiota against mastitis in cows.


Subject(s)
Gastrointestinal Microbiome , Mastitis, Bovine/microbiology , Rumen/microbiology , Animals , Bacterial Translocation , Cattle , Feces/microbiology , Female , Lactation , Mammary Glands, Animal/immunology , Mammary Glands, Animal/microbiology , Mastitis, Bovine/immunology , Mastitis, Bovine/physiopathology , Milk/metabolism , Stenotrophomonas/physiology
4.
Genes (Basel) ; 12(12)2021 12 16.
Article in English | MEDLINE | ID: mdl-34946945

ABSTRACT

Laminitis is the inflammation of the lamella, and it has caused great economic loss to the dairy industry and attracted wide attention around the world. In recent years, microbiota are considered to play a significant role in various diseases processes. Therefore, our study aimed to explore the characteristics of ruminal microbiota in laminitis cows. The serum of bovines with or without laminitis was collected to detect concentrations of lipopolysaccharide (LPS), lactic acid, and histamine, and ruminal fluid was collected for 16S rDNA sequence analysis. The results showed a significant increase in LPS and lactic acid levels in the laminitis group compared to the control group cows. In addition, a higher abundance of Candidatus Saccharimonas, Saccharofermentans, Erysipelotrichaceae UCG-009 genus, Acetobacter pasteurianus, Clostridium papyrosolvens, Ruminococcaceae bacterium AE2021, Porphyromonas crevioricanis, Pseudomonas boreopolis, Pseudomonas psychrotolerans, Rothia nasimurium, and Rothia pickettii was detected in the rumen fluid of laminitis bovines. In conclusion, this article confirms that there are differences in rumen microbiota between healthy and laminitis bovines. The elevated abundance of bacteria that enrich acid-enhancing metabolites, as well as increase the concentration of lactic acid and LPS, could be harmful factors to bovines and increase the risk of laminitis.


Subject(s)
Cattle/microbiology , Microbiota/genetics , Rumen/microbiology , Animals , Bacteria/genetics , Cattle/blood , China , Dairying , Diet/veterinary , RNA, Ribosomal, 16S/genetics , Rumen/metabolism
5.
Food Funct ; 11(4): 3695-3705, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32307472

ABSTRACT

Endometritis, the inflammation of the endometrial lining caused by bacterial pathogens, is associated with reproductive failure. Recent studies have shown that gut microbiota play an important role in infectious diseases. However, the roles of the gut microbiota in endometritis remain unclear. Here, we assessed the effects and mechanisms of the gut microbiota during endometritis induced by Staphylococcus aureus (S. aureus). A mouse gut microbiota-dysbiosis model was established by a mixture of antibiotics (Abx) and subsequently, a model of endometritis was established by the uterine perfusion of S. aureus. Fecal microbiota transplantation (FMT) was performed to evaluate the relationship between gut microbiota and endometritis. The results showed that the mice with gut microbiota-dysbiosis developed uterine inflammation, while this inflammatory response of the uterus was alleviated in mice with FMT to gut microbiota-dysbiosis. In addition, S. aureus-induced endometritis was greater in severity in the mice with gut dysbiosis as compared to the untreated mice. Moreover, these effects were reversed in mice with FMT to the gut microbiota-dysbiosis. GC-MS analysis demonstrated that the levels of short-chain fatty acids (SCFAs) in the feces of mice with gut microbiota-dysbiosis significantly decreased and pretreatment with sodium butyrate or sodium propionate increased the concentrations of butyrate or propionate in both the circulation and uterine tissues, thereby reducing the severity of endometritis induced by S. aureus. In addition, the increased pathogen load in the uteri of the mice with gut microbiota-dysbiosis was associated with a reduction in the phagocytic ability and responsiveness of neutrophils. In conclusion, the gut microbiota offer a protective effect against S. aureus-induced endometritis by regulating the levels of SCFAs and maintaining the phagocytic ability and responsiveness of neutrophils.


Subject(s)
Endometritis/prevention & control , Gastrointestinal Microbiome , Staphylococcus aureus/pathogenicity , Animals , Disease Models, Animal , Fecal Microbiota Transplantation , Female , Mice , Mice, Inbred BALB C , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...