Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Acta Pharmacol Sin ; 45(2): 282-297, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803141

ABSTRACT

The GRIN genes encoding N-methyl-D-aspartate receptor (NMDAR) subunits are remarkably intolerant to variation. Many pathogenic NMDAR variants result in their protein misfolding, inefficient assembly, reduced surface expression, and impaired function on neuronal membrane, causing neurological disorders including epilepsy and intellectual disability. Here, we investigated the proteostasis maintenance of NMDARs containing epilepsy-associated variations in the GluN2A subunit, including M705V and A727T. In the transfected HEK293T cells, we showed that the two variants were targeted to the proteasome for degradation and had reduced functional surface expression. We demonstrated that the application of BIX, a known small molecule activator of an HSP70 family chaperone BiP (binding immunoglobulin protein) in the endoplasmic reticulum (ER), dose-dependently enhanced the functional surface expression of the M705V and A727T variants in HEK293T cells. Moreover, BIX (10 µM) increased the surface protein levels of the M705V variant in human iPSC-derived neurons. We revealed that BIX promoted folding, inhibited degradation, and enhanced anterograde trafficking of the M705V variant by modest activation of the IRE1 pathway of the unfolded protein response. Our results suggest that adapting the ER proteostasis network restores the folding, trafficking, and function of pathogenic NMDAR variants, representing a potential treatment for neurological disorders resulting from NMDAR dysfunction.


Subject(s)
Epilepsy , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Proteostasis , HEK293 Cells , Epilepsy/genetics , Epilepsy/metabolism , Endoplasmic Reticulum/metabolism
2.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014242

ABSTRACT

Variants in the genes encoding the subunits of gamma-aminobutyric acid type A (GABAA) receptors are associated with epilepsy. To date, over 1000 clinical variants have been identified in these genes. However, the majority of these variants lack functional studies and their clinical significance is uncertain although accumulating evidence indicates that proteostasis deficiency is the major disease-causing mechanism for GABAA receptor variants. Here, we apply two state-of-the-art modeling tools, namely AlphaMissense, which uses an artificial intelligence-based approach based on AlphaFold structures, and Rhapsody, which integrates sequence evolution and known structure-based data, to predict the pathogenicity of saturating missense variants in genes that encode the major subunits of GABAA receptors in the central nervous system, including GABRA1, GABRB2, GABRB3, and GABRG2. Our results demonstrate that the predicted pathogenicity correlates well between AlphaMissense and Rhapsody although AlphaMissense tends to generate higher pathogenic probability. Furthermore, almost all annotated pathogenic variants in the ClinVar clinical database are successfully identified from the prediction, whereas uncertain variants from ClinVar partially due to the lack of experimental data are differentiated into different pathogenicity groups. The pathogenicity prediction of GABAA receptor missense variants provides a resource to the community as well as guidance for future experimental and clinical investigations.

3.
bioRxiv ; 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37131660

ABSTRACT

Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding and assembly and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.

4.
Neuropharmacology ; 221: 109295, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36257447

ABSTRACT

Genetic sequencing is identifying an expanding number of variants of GABAA receptors associated with human epilepsies. We identified a new de novo variant of the ß2 subunit (ß2L51M) of the inhibitory GABAA receptor associated with seizures. Our analysis determined the pathogenicity of the variant and the effects of anti-seizure medications. Our data demonstrates that the variant reduced cell surface trafficking and peak GABA-gated currents. Synaptic currents mediated by variant-containing receptors decayed faster than wild-type and single receptor currents showed that the variant shortened the duration of receptor activity by decreasing receptor open times. We tested the effects of the anti-seizure medications, midazolam, carbamazepine and valproate and found that all three enhance variant receptor surface expression. Additionally, midazolam restored receptor function by increasing single receptor active periods and synaptic current decay times towards wild-type levels. By contrast, valproate increased synaptic peak currents, event frequency and promoted synaptic bursting. Our study identifies a new disease-causing variant to the GABAA receptor, profiles its pathogenic effects and demonstrates how anti-seizure drugs correct its functional deficits.


Subject(s)
Epilepsy , Receptors, GABA-A , Humans , Receptors, GABA-A/metabolism , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Midazolam/pharmacology , Midazolam/therapeutic use , Epilepsy/drug therapy , gamma-Aminobutyric Acid/therapeutic use
5.
Front Cell Neurosci ; 16: 907560, 2022.
Article in English | MEDLINE | ID: mdl-35936491

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that mediate excitatory neurotransmission and are critical for synaptic development and plasticity in the mammalian central nervous system (CNS). Functional NMDARs typically form via the heterotetrameric assembly of GluN1 and GluN2 subunits. Variants within GRIN genes are implicated in various neurodevelopmental and neuropsychiatric disorders. Due to the significance of NMDAR subunit composition for regional and developmental signaling at synapses, properly folded receptors must reach the plasma membrane for their function. This review focuses on the protein quality control of NMDARs. Specifically, we review the quality control mechanisms that ensure receptors are correctly folded and assembled within the endoplasmic reticulum (ER) and trafficked to the plasma membrane. Further, we discuss disease-associated variants that have shown disrupted NMDAR surface expression and function. Finally, we discuss potential targeted pharmacological and therapeutic approaches to ameliorate disease phenotypes by enhancing the expression and surface trafficking of subunits harboring disease-associated variants, thereby increasing their incorporation into functional receptors.

6.
iScience ; 25(8): 104754, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35938049

ABSTRACT

The endoplasmic reticulum membrane complex (EMC) plays a critical role in the biogenesis of tail-anchored proteins and a subset of multi-pass membrane proteins in the endoplasmic reticulum (ER). However, because of nearly exclusive expression of neurotransmitter-gated ion channels in the central nervous system (CNS), the role of the EMC in their biogenesis is not well understood. In this study, we demonstrated that the EMC positively regulates the surface trafficking and thus function of endogenous γ-aminobutyric acid type A (GABAA) receptors, the primary inhibitory ion channels in the mammalian brain. Moreover, among ten EMC subunits, EMC3 and EMC6 have the most prominent effect, and overexpression of EMC3 or EMC6 is sufficient to restore the function of epilepsy-associated GABAA receptor variants. In addition, EMC3 and EMC6 demonstrate endogenous interactions with major neuroreceptors, which depends on their transmembrane domains, suggesting a general role of the EMC in the biogenesis of neuroreceptors.

7.
J Biol Chem ; 298(10): 102423, 2022 10.
Article in English | MEDLINE | ID: mdl-36030824

ABSTRACT

Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.


Subject(s)
Proteostasis , Receptors, GABA-A , Animals , Mice , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , gamma-Aminobutyric Acid/metabolism , Proteomics , Receptors, GABA-A/metabolism
8.
Cell Biosci ; 12(1): 48, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477478

ABSTRACT

BACKGROUND: Genetic variants in the subunits of the gamma-aminobutyric acid type A (GABAA) receptors are implicated in the onset of multiple pathologic conditions including genetic epilepsy. Previous work showed that pathogenic GABAA subunits promote misfolding and inefficient assembly of the GABAA receptors, limiting receptor expression and activity at the plasma membrane. However, GABAA receptors containing variant subunits can retain activity, indicating that enhancing the folding, assembly, and trafficking of these variant receptors offers a potential opportunity to mitigate pathology associated with genetic epilepsy. RESULTS: Here, we demonstrate that pharmacologically enhancing endoplasmic reticulum (ER) proteostasis using small molecule activators of the ATF6 (Activating Transcription Factor 6) signaling arm of the unfolded protein response (UPR) increases the assembly, trafficking, and surface expression of variant GABAA receptors. These improvements are attributed to ATF6-dependent remodeling of the ER proteostasis environment, which increases protein levels of pro-folding ER proteostasis factors including the ER chaperone BiP (Immunoglobulin Binding Protein) and trafficking receptors, such as LMAN1 (Lectin Mannose-Binding 1) and enhances their interactions with GABAA receptors. Importantly, we further show that pharmacologic ATF6 activators increase the activity of GABAA receptors at the cell surface, revealing the potential for this strategy to restore receptor activity to levels that could mitigate disease pathogenesis. CONCLUSIONS: These results indicate that pharmacologic ATF6 activators offer an opportunity to restore GABAA receptor activity in diseases including genetic epilepsy and point to the potential for similar pharmacologic enhancement of ER proteostasis to improve trafficking of other disease-associated variant ion channels implicated in etiologically-diverse diseases.

9.
Cell Chem Biol ; 28(1): 46-59.e7, 2021 01 21.
Article in English | MEDLINE | ID: mdl-32888501

ABSTRACT

Proteostasis deficiency in mutated ion channels leads to a variety of ion channel diseases that are caused by excessive endoplasmic reticulum-associated degradation (ERAD) and inefficient membrane trafficking. We investigated proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors, the primary mediators of neuronal inhibition in the mammalian central nervous system. We screened a structurally diverse, Food and Drug Administration-approved drug library and identified dinoprost (DNP) and dihydroergocristine (DHEC) as highly efficacious enhancers of surface expression of four epilepsy-causing trafficking-deficient mutant receptors. Furthermore, DNP and DHEC restore whole-cell and synaptic currents by incorporating mutated subunits into functional receptors. Mechanistic studies revealed that both drugs reduce subunit degradation by attenuating the Grp94/Hrd1/Sel1L/VCP-mediated ERAD pathway and enhance the subunit folding by promoting subunit interactions with major GABAA receptors-interacting chaperones, BiP and calnexin. In summary, we report that DNP and DHEC remodel the endoplasmic reticulum proteostasis network to restore the functional surface expression of mutant GABAA receptors.


Subject(s)
Dihydroergocristine/pharmacology , Dinoprost/pharmacology , Epilepsy/drug therapy , Proteostasis/drug effects , Receptors, GABA-A/metabolism , Cell Line , Endoplasmic Reticulum-Associated Degradation/drug effects , Epilepsy/metabolism , Female , Humans , Male , Receptors, GABA-A/genetics
10.
Cell Chem Biol ; 26(7): 909-910, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31323219

ABSTRACT

In this issue of Cell Chemical Biology, Plate et al. (2019) used quantitative interactome proteomics to define the molecular mechanism by which ATF6 activation reduces amyloidogenic protein secretion. These results shed light on preventing the amyloid formation at the very early step to treat devastating amyloid diseases.


Subject(s)
Proteomics , Proteostasis , Amyloid , Amyloidogenic Proteins
11.
Biochem Biophys Res Commun ; 511(2): 356-362, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30791981

ABSTRACT

The endoplasmic reticulum-Golgi intermediate compartment protein-53 (ERGIC-53, aka LMAN1), which cycles between the endoplasmic reticulum (ER) and Golgi, is a known cargo receptor for a number of soluble proteins. However, whether LMAN1 plays a role as a trafficking factor in the central nervous system is largely unknown. Here, we determined the role of LMAN1 on endogenous protein levels of the Cys-loop superfamily of neuroreceptors, including gamma-aminobutyric acid type A receptors (GABAARs), 5-hydroxytryptamine (serotonin) type 3 (5-HT3) receptors, and nicotinic acetylcholine receptors (nAChRs). Knockdown of LMAN1 reduces the surface trafficking of endogenous ß3 subunits of GABAARs in mouse hypothalamic GT1-7 neurons. Furthermore, Western blot analysis of brain homogenates from LMAN1 knockout mice demonstrated that loss of LMAN1 decreases the total protein levels of 5HT3A receptors and γ2 subunits of GABAARs. LMAN1 knockout regulates the ER proteostasis network by upregulating ERP44 without changing calnexin levels. Interestingly, despite the critical role of the glycan-binding function of LMAN1 in its other known cargo clients, LMAN1 interacts with GABAARs in a glycan-independent manner. In summary, LMAN1 is a trafficking factor for certain neuroreceptors in the central nervous system. This is the first report of LMAN1 function in membrane protein trafficking.


Subject(s)
Mannose-Binding Lectins/metabolism , Membrane Proteins/metabolism , Receptors, GABA-A/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Sensory Receptor Cells/metabolism , Animals , Brain/metabolism , Cell Line , Humans , Mannose-Binding Lectins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Protein Transport
12.
PLoS One ; 13(11): e0207948, 2018.
Article in English | MEDLINE | ID: mdl-30481215

ABSTRACT

Biogenesis of membrane proteins is controlled by the protein homeostasis (proteostasis) network. We have been focusing on protein quality control of γ-aminobutyric acid type A (GABAA) receptors, the major inhibitory neurotransmitter-gated ion channels in mammalian central nervous system. Proteostasis deficiency in GABAA receptors causes loss of their surface expression and thus function on the plasma membrane, leading to epilepsy and other neurological diseases. One well-characterized example is the A322D mutation in the α1 subunit that causes its extensive misfolding and expedited degradation in the endoplasmic reticulum (ER), resulting in autosomal dominant juvenile myoclonic epilepsy. We aimed to correct misfolding of the α1(A322D) subunits in the ER as an approach to restore their functional surface expression. Here, we showed that application of BIX, a specific, potent ER resident HSP70 family protein BiP activator, significantly increases the surface expression of the mutant receptors in human HEK293T cells and neuronal SH-SY5Y cells. BIX attenuates the degradation of α1(A322D) and enhances their forward trafficking and function. Furthermore, because BiP is one major target of the two unfolded protein response (UPR) pathways: ATF6 and IRE1, we continued to demonstrate that modest activations of the ATF6 pathway and IRE1 pathway genetically enhance the plasma membrane trafficking of the α1(A322D) protein in HEK293T cells. Our results underlie the potential of regulating the ER proteostasis network to correct loss-of-function protein conformational diseases.


Subject(s)
Endoplasmic Reticulum/metabolism , Proteostasis , Receptors, GABA-A/metabolism , Amino Acid Sequence , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Endoplasmic Reticulum/drug effects , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Mutation , Neurons/drug effects , Neurons/metabolism , Protein Conformation , Protein Transport/drug effects , Proteostasis/drug effects , Receptors, GABA-A/genetics , Thiocyanates/pharmacology , Unfolded Protein Response/drug effects
13.
Cell Rep ; 21(10): 2895-2910, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29212034

ABSTRACT

GADD34, a stress-induced regulatory subunit of the phosphatase PP1, is known to function in hyperosmotic stress through its well-known role in the integrated stress response (ISR) pathway. Adaptation to hyperosmotic stress is important for the health of corneal epithelial cells exposed to changes in extracellular osmolarity, with maladaptation leading to dry eye syndrome. This adaptation includes induction of SNAT2, an endoplasmic reticulum (ER)-Golgi-processed protein, which helps to reverse the stress-induced loss of cell volume and promote homeostasis through amino acid uptake. Here, we show that GADD34 promotes the processing of proteins synthesized on the ER during hyperosmotic stress independent of its action in the ISR. We show that GADD34/PP1 phosphatase activity reverses hyperosmotic-stress-induced Golgi fragmentation and is important for cis- to trans-Golgi trafficking of SNAT2, thereby promoting SNAT2 plasma membrane localization and function. These results suggest that GADD34 is a protective molecule for ocular diseases such as dry eye syndrome.


Subject(s)
Amino Acid Transport System A/metabolism , Protein Phosphatase 1/metabolism , Amino Acid Transport System A/genetics , Amino Acids/metabolism , Blotting, Western , Humans , Osmosis/physiology , Protein Phosphatase 1/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Reverse Transcriptase Polymerase Chain Reaction
14.
J Biol Chem ; 291(18): 9526-39, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26945068

ABSTRACT

Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/physiology , Endoplasmic Reticulum/metabolism , Membrane Glycoproteins/metabolism , Proteolysis , Receptors, GABA-A/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Substitution , Endoplasmic Reticulum/genetics , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Mutation, Missense , Receptors, GABA-A/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/physiology
15.
Article in English | MEDLINE | ID: mdl-26920686

ABSTRACT

The Cys-loop receptors play prominent roles in the nervous system. They include γ-aminobutyric acid type A receptors, nicotinic acetylcholine receptors, 5-hydroxytryptamine type-3 receptors, and glycine receptors. Proteostasis represents an optimal state of the cellular proteome in normal physiology. The proteostasis network regulates the folding, assembly, degradation, and trafficking of the Cys-loop receptors, ensuring their efficient functional cell surface expressions. Here, we summarize current advances about the protein biogenesis process of the Cys-loop receptors. Because operating on individual biogenesis steps influences the receptor cell surface level, manipulating the proteostasis network components can regulate the function of the receptors, representing an emerging therapeutic strategy for corresponding channelopathies.


Subject(s)
Cysteine Loop Ligand-Gated Ion Channel Receptors/chemistry , Receptors, GABA/chemistry , Receptors, Glycine/chemistry , Receptors, Nicotinic/chemistry , Receptors, Serotonin, 5-HT3/chemistry , Cell Membrane , Cysteine Loop Ligand-Gated Ion Channel Receptors/metabolism , Endocytosis/genetics , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Golgi Apparatus/chemistry , Golgi Apparatus/metabolism , Protein Folding , Protein Transport/genetics , Receptors, GABA/metabolism , Receptors, Glycine/metabolism , Receptors, Nicotinic/metabolism , Receptors, Serotonin, 5-HT3/metabolism
16.
ACS Chem Biol ; 10(9): 2135-48, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26168288

ABSTRACT

Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 µM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)ß2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and ß2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that verapamil treatment enhances the calnexin-assisted forward trafficking and subunit assembly, which leads to substantially enhanced functional surface expression of the mutant receptors. Since verapamil is an FDA-approved drug that crosses blood-brain barrier and has been used as an additional medication for some epilepsies, our findings suggest that verapamil holds great promise to be developed to ameliorate IGE resulting from α1(D219N) subunit trafficking deficiency.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Protein Transport/drug effects , Receptors, GABA-A/metabolism , Verapamil/pharmacology , Calnexin/metabolism , Calreticulin/metabolism , Cell Line , Endoplasmic Reticulum-Associated Degradation/drug effects , Epilepsy/drug therapy , Epilepsy/metabolism , HEK293 Cells , Humans , Models, Molecular , Neurons/drug effects , Neurons/metabolism , Protein Interaction Maps/drug effects , Protein Subunits/metabolism
17.
J Biol Chem ; 290(1): 325-37, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25406314

ABSTRACT

GABAA receptors are the primary inhibitory ion channels in the mammalian central nervous system. The A322D mutation in the α1 subunit results in its excessive endoplasmic reticulum-associated degradation at the expense of plasma membrane trafficking, leading to autosomal dominant juvenile myoclonic epilepsy. Presumably, valosin-containing protein (VCP)/p97 extracts misfolded subunits from the endoplasmic reticulum membrane to the cytosolic proteasome for degradation. Here we showed that inhibiting VCP using Eeyarestatin I reduces the endoplasmic reticulum-associated degradation of the α1(A322D) subunit without an apparent effect on its dynamin-1 dependent endocytosis and that this treatment enhances its trafficking. Furthermore, coapplication of Eeyarestatin I and suberanilohydroxamic acid, a known small molecule that promotes chaperone-assisted folding, yields an additive restoration of surface expression of α1(A322D) subunits in HEK293 cells and neuronal SH-SY5Y cells. Consequently, this combination significantly increases GABA-induced chloride currents in whole-cell patch clamping experiments than either chemical compound alone in HEK293 cells. Our findings suggest that VCP inhibition without stress induction, together with folding enhancement, represents a new strategy to restore proteostasis of misfolding-prone GABAA receptors and, therefore, a potential remedy for idiopathic epilepsy.


Subject(s)
Adenosine Triphosphatases/genetics , Cell Cycle Proteins/genetics , Endoplasmic Reticulum-Associated Degradation/drug effects , Hydrazones/pharmacology , Hydroxamic Acids/pharmacology , Hydroxyurea/analogs & derivatives , Receptors, GABA-A/chemistry , Action Potentials/drug effects , Action Potentials/physiology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Adolescent , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chlorides/metabolism , Drug Synergism , Dynamin I/genetics , Dynamin I/metabolism , Endocytosis/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/genetics , HEK293 Cells , Humans , Hydroxyurea/pharmacology , Myoclonic Epilepsy, Juvenile/genetics , Myoclonic Epilepsy, Juvenile/metabolism , Myoclonic Epilepsy, Juvenile/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Patch-Clamp Techniques , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Folding/drug effects , Protein Stability/drug effects , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Signal Transduction , Valosin Containing Protein , Vorinostat , gamma-Aminobutyric Acid/metabolism
18.
PLoS Genet ; 10(9): e1004641, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25233454

ABSTRACT

High blood pressure (BP) is the most common cardiovascular risk factor worldwide and a major contributor to heart disease and stroke. We previously discovered a BP-associated missense SNP (single nucleotide polymorphism)-rs2272996-in the gene encoding vanin-1, a glycosylphosphatidylinositol (GPI)-anchored membrane pantetheinase. In the present study, we first replicated the association of rs2272996 and BP traits with a total sample size of nearly 30,000 individuals from the Continental Origins and Genetic Epidemiology Network (COGENT) of African Americans (P=0.01). This association was further validated using patient plasma samples; we observed that the N131S mutation is associated with significantly lower plasma vanin-1 protein levels. We observed that the N131S vanin-1 is subjected to rapid endoplasmic reticulum-associated degradation (ERAD) as the underlying mechanism for its reduction. Using HEK293 cells stably expressing vanin-1 variants, we showed that N131S vanin-1 was degraded significantly faster than wild type (WT) vanin-1. Consequently, there were only minimal quantities of variant vanin-1 present on the plasma membrane and greatly reduced pantetheinase activity. Application of MG-132, a proteasome inhibitor, resulted in accumulation of ubiquitinated variant protein. A further experiment demonstrated that atenolol and diltiazem, two current drugs for treating hypertension, reduce the vanin-1 protein level. Our study provides strong biological evidence for the association of the identified SNP with BP and suggests that vanin-1 misfolding and degradation are the underlying molecular mechanism.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Blood Pressure/genetics , Endoplasmic Reticulum-Associated Degradation/genetics , Genetic Variation , Alleles , Amidohydrolases/blood , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Cohort Studies , Enzyme Activation , GPI-Linked Proteins/blood , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Genetic Association Studies , Genotype , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/genetics , Mutation , Phenotype , Polymorphism, Single Nucleotide
19.
Pharmacol Res ; 83: 3-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24747662

ABSTRACT

Normal organismal physiology depends on the maintenance of proteostasis in each cellular compartment to achieve a delicate balance between protein synthesis, folding, trafficking, and degradation while minimizing misfolding and aggregation. Defective proteostasis leads to numerous protein misfolding diseases. Pharmacological chaperones are cell-permeant small molecules that promote the proper folding and trafficking of a protein via direct binding to that protein. They stabilize their target protein in a protein-pharmacological chaperone state, increasing the natively folded protein population that can effectively engage trafficking machinery for transport to the final destination for function. Here, as regards the application of pharmacological chaperones, we focus on their capability to promote the folding and trafficking of lysosomal enzymes, G protein coupled receptors (GPCRs), and ion channels, each of which is presently an important drug target. Pharmacological chaperones hold great promise as potential therapeutics to ameliorate a variety of protein misfolding diseases.


Subject(s)
Drug Discovery , Ion Channels/metabolism , Lysosomes/enzymology , Protein Folding/drug effects , Protein Transport/drug effects , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Ion Channels/chemistry , Lysosomes/drug effects , Lysosomes/pathology , Proteostasis Deficiencies/drug therapy , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Receptors, G-Protein-Coupled/chemistry
20.
Chem Biol ; 20(12): 1456-68, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24211135

ABSTRACT

GABA(A) receptors are the primary inhibitory ion channels in the mammalian central nervous system. The A322D mutation in the α1 subunit of GABA(A) receptors is known to result in its degradation and reduce its cell surface expression, leading to loss of GABAA receptor function in autosomal dominant juvenile myoclonic epilepsy. Here, we show that SAHA, a FDA-approved drug, increases the transcription of the α1(A322D) subunit, enhances its folding and trafficking posttranslationally, increases its cell surface level, and restores the GABA-induced maximal current in HEK293 cells expressing α1(A322D)ß2γ2 receptors to 10% of that for wild-type receptors. To enhance the trafficking efficiency of the α1(A322D) subunit, SAHA increases the BiP protein level and the interaction between the α1(A322D) subunit and calnexin. SAHA is a drug that enhances epilepsy-associated GABAA receptor proteostasis.


Subject(s)
Epilepsy/genetics , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Protein Transport/drug effects , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Calnexin/metabolism , HEK293 Cells , Humans , Point Mutation , Protein Folding/drug effects , Protein Interaction Maps/drug effects , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, GABA-A/chemistry , Vorinostat , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...