Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 222: 118875, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35870392

ABSTRACT

The blooming of beach-cast seaweed has caused environmental degradation in some coastal regions. Therefore, a proper treating and utilizing method of beach-cast seaweed is demanded. This study investigated the potential of producing power or biofuel from pyrolysis of beach-cast seaweed and the effect of the ash-washing process. First, the raw and washed beach-cast seaweeds (RS and WS) were prepared. Thereafter, thermogravimetric analysis (TG), bench-scale pyrolysis experiment, process simulation, and life cycle assessment (LCA) were conducted. The TG results showed that the activation energies of thermal decomposition of the main organic contents of RS and WS were 44.23 and 58.45 kJ/mol, respectively. Three peak temperatures of 400, 500, and 600 °C were used in the bench-scale pyrolysis experiments of WS. The 600 °C case yielded the most desirable gas and liquid products. The bench-scale pyrolysis experiment of RS was conducted at 600 °C as well. Also, an LCA was conducted based on the simulation result of 600 °C pyrolysis of WS. The further process simulation and LCA results show that compare to producing liquid biofuel and syngas, a process designed for electricity production is most favored. It was estimated that treating 1 ton of dry WS can result in a negative cumulative energy demand of -2.98 GJ and carbon emissions of -790.89 kg CO2 equivalence.


Subject(s)
Pyrolysis , Seaweed , Animals , Biofuels , Life Cycle Stages , Temperature , Vegetables
2.
Anal Chim Acta ; 1194: 339412, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35063160

ABSTRACT

Quantitative mass spectrometry analysis for multi-component gas phase reaction processes is a typical multi-input and multi-output (MIMO) nonlinear problem. Conventional calibration and analytical methods that are based on the common hypothesis of linearity of the detected signal and gas parameters, could result in misjudgment of the reaction mechanism and inaccuracy in the determination of the reaction kinetics. In the present work, theoretical derivations based on equivalent characteristic spectrum analysis (ECSA®), discrete mode experiments and continuous mode experiments were performed, and the nonlinearity of mass spectrometry was confirmed. It is only possible to determine the physical parameters such as flow rate and/or concentrations of gases by properly handling the nonlinearity of mass spectrometry. In such case comprehensive reaction mechanisms and even the kinetics of the process can be accurately characterized. Well-handled nonlinear mass spectrometry analysis ensures a reliable and highly accurate identification for the multi-component gas phase reaction processes, and ensures high signal-to-noise ratio for detecting the small-flow gases at a wide range of carrier gas flow.


Subject(s)
Gases , Calibration , Kinetics , Mass Spectrometry
3.
ACS Appl Mater Interfaces ; 13(37): 45008-45017, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34494820

ABSTRACT

Enhancing the operating temperature of concentrating solar power systems is a promising way to obtain higher system efficiency and thus enhance their competitiveness. One major barrier is the unavailability of suitable solar absorber materials for operation at higher temperatures. In this work, we report on a new high-temperature absorber material by combining Ti2AlC MAX phase material and iron-cobalt-chromite spinel coating/paint. This durable material solution exhibits excellent performance, passing the thermal stability test in an open-air environment at a temperature of 1250 °C for 400 h and at 1300 °C for 200 h. The results show that the black spinel coating can offer a stable high solar absorptivity in the range of 0.877-0.894 throughout the 600 h test under high temperatures. These solar absorptivity values are even 1.6-3.3% higher than that for the sintered SiC ceramic that is a widely used solar absorber material. Divergence of solar absorptivity during these relatively long testing periods is less than 1.1%, indicating remarkable stability of the absorber material. Furthermore, considering the simple application process of the coating/painting utilizing a brush followed by curing at relatively low temperatures (room temperature, 95 and 260 °C in sequence), this absorber material shows the potential for large-scale, high-temperature solar thermal applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...