Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Chem ; 12: 1382850, 2024.
Article in English | MEDLINE | ID: mdl-38698935

ABSTRACT

The development of two-dimensional (2D) materials has received wide attention as a generation of optoelectronics, thermoelectric, and other applications. In this study, a novel 2D material, PbN, is proposed as an elemental method using the prototype of a recent reported nitride (J. Phys. Chem. C 2023, 127, 43, 21,006-21014). Based on first-principle calculations, the PbN monolayer is investigated as stable at 900 K, and the isotropic mechanical behavior is addressed by the Young's modulus and Poisson's ratio at 67.4 N m-1 and 0.15, respectively. The PbN monolayer also presents excellent catalytic performance with Gibbs free energy of 0.41 eV. Zero bandgap is found for the PbN monolayer, and it can be opened at about 0.128 eV by forming a heterostructure with CdO. Furthermore, the PbN/CdO is constructed by Van der Waals interaction, while the apparent potential drop and charge transfer are investigated at the interface. The PbN/CdO heterostructure also possesses excellent light absorption properties. The results provide theoretical guidance for the design of layered functional materials.

2.
Molecules ; 29(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611755

ABSTRACT

Density functional theory (DFT) characterizations were employed to resolve the structural and energetic aspects and product selectivities along the mechanistic reaction paths of the nickel-catalyzed three-component unsymmetrical bis-allylation of alkynes with alkenes. Our putative mechanism initiated with the in situ generation of the active catalytic species [Ni(0)L2] (L = NHC) from its precursors [Ni(COD)2, NHC·HCl] to activate the alkyne and alkene substrates to form the final skipped trienes. This proceeds via the following five sequential steps: oxidative addition (OA), ß-F elimination, ring-opening complexation, C-B cleavage and reductive elimination (RE). Both the OA and RE steps (with respective free energy barriers of 24.2 and 24.8 kcal·mol-1) contribute to the observed reaction rates, with the former being the selectivity-controlling step of the entire chemical transformation. Electrophilic/nucleophilic properties of selected substrates were accurately predicted through dual descriptors (based on Hirshfeld charges), with the chemo- and regio-selectivities being reasonably predicted and explained. Further distortion/interaction and interaction region indicator (IRI) analyses for key stationary points along reaction profiles indicate that the participation of the third component olefin (allylboronate) and tBuOK additive played a crucial role in facilitating the reaction and regenerating the active catalyst, ensuring smooth formation of the skipped triene product under a favorably low dosage of the Ni(COD)2 catalyst (5 mol%).

3.
J Org Chem ; 89(7): 4406-4422, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38512313

ABSTRACT

The palladium-catalyzed sequential cross-coupling/annulation of ortho-vinyl bromobenzenes with aryl bromides generating phenanthrenes was characterized by density functional theory (DFT). The Pd(II)-Pd(IV) pathway (Path V) is shown to be less probable than the bimetallic pathway (Path I), the latter proceeding via the following six steps: oxidative addition, vinyl-C(sp2)-H activation, Pd(II)-Pd(II) transmetalation, C-C coupling, aryl-C(sp2)-H activation, and reductive elimination. The aryl-C(sp2)-H activation process acts as the rate-determining step (RDS) of the entire chemical transformation, with an activation free energy barrier of ca. 27.4-28.8 kcal·mol-1, in good agreement with the corresponding experimental data (phenanthrenes' yields of ca. 65-90% at 130 °C after 5 h of reaction). The K2CO3 additive effectively reduces the activation free energy barrier of the RDS through direct participation in the reaction while preferentially modulating the charge distributions and increasing the stability of corresponding intermediates and complexes along the reaction path. Furthermore, bonding and electronic structure analyses of the key structures indicate that the chemo- and regioselectivities of the reaction are strongly influenced by both electronic effects and steric hindrance.

4.
ACS Appl Mater Interfaces ; 16(3): 4212-4221, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38215272

ABSTRACT

Molecules are the smallest units of matter that can exist independently, relatively stable, maintaining their physical and chemical activities. The key factors that dominate the structures and properties of molecules include atomic species, alignment commands, and chemical bonds. Herein, we reported a generalized effect in which liquid metals can directly cut off oxygen-containing groups in molecular matter at room temperature, allowing the remaining groups to recombine to form functional materials. Thus, we propose basic liquid-metal scissors for molecular directional clipping and functional transformations. As a proof of concept, we demonstrate the capabilities of liquid-metal scissors and reveal that the gallium on the surface of liquid metals directly extracts oxygen atoms from H2O or CH3OH molecules to form oxides. After clipping, the remaining hydrogen atoms from the H2O molecules recombine to form H2, while the remaining fragments of CH3OH produce H2, carbon materials, and carboxylates. This finding refreshes our basic understanding of chemistry and should lead to the development of straightforward molecular weaving techniques, which can help to overcome the limitations of molecular substances with single purposes. It also opens a universal route for realizing future innovations in molecular chemical engineering, life sciences, energy and environment research, and biomedicine.

5.
Phys Chem Chem Phys ; 25(47): 32378-32386, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37997047

ABSTRACT

Defect engineering has been considered as an effective way for controlling the heat transport properties of two-dimensional materials. In this work, the effects of point vacancies and grain boundaries on the mechanical and thermal performances of SiC and GeC monolayers are investigated systematically by molecular dynamics calculations. The failure strength in SiC and GeC is decreased by introducing vacancies at room temperature, and the stress-strain relationship can be tuned significantly by different kinds of vacancies. When the grain boundary of 21.78° is applied, the maximal fracture strengths can be as large as 27.56% for SiC and 23.56% for GeC. Also, the thermal properties of the two monolayers show a remarkable dependence on the vacancies and grain boundaries. The high vacancy density in SiC and GeC can induce disordered heat flow and the C/Ge point defect is crucial for thermal conductivity regulation for the Si/GeC monolayer. More importantly, the SiC and GeC monolayers with a grain boundary of 5.09° show excellent interfacial thermal conductance. Our findings are of great importance in understanding SiC and GeC monolayers and seeking their potential applications.

6.
Dalton Trans ; 52(30): 10609-10620, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37462420

ABSTRACT

Regioselective B-H activation of o-carboranes is an effective way for constructing o-carborane derivatives, which have broad applications in medicine, catalysis and the wider chemical industry. However, the mechanistic basis for the observed selectivities remains unresolved. Herein, a series of density functional theory (DFT) calculations were employed to characterise the palladium N-heterocyclic carbene (Pd-NHC) catalysed regioselective B(3,6)-diarylation of o-carboranes. Computational results at the IDSCRF(ether)-LC-ωPBE/BS1 and IDSCRF(ether)-LC-ωPBE/BS2 levels showed that the reaction undergoes a Pd(0) → Pd(II) → Pd(0) oxidation/reduction cycle, with the regioselective B(3)-H activation being the rate-determining step (RDS) for the full reaction profile. The computed RDS free energy barrier of 24.3 kcal mol-1 agrees well with the 82% yield of B(3,6)-diphenyl-o-carborane in ether solution at 298 K after 24 hours of reaction. The Ag2CO3 additive was shown to play a crucial role in lowering the RDS free energy barrier and facilitating the reaction. Natural charge population (NPA) and molecular surface electrostatic potential (ESP) analyses successfully predicted the experimentally observed regioselectivities, with electronic effects being revealed to be the dominant contributors to product selectivity. Steric hindrance was also shown to impact the reaction rate, as revealed by experimental and computational characterisation studies of substituents and ligand effects. Furthermore, computational predictions aligned with the experimental findings that NHC ligands outperform the phosphine ones for this particular reaction. Overall, the observed trends reported in this work are expected to assist in the rational optimisation of the efficiency and regioselectivity of this and related reactions.

7.
ACS Biomater Sci Eng ; 9(4): 2001-2013, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36930196

ABSTRACT

It remains a challenge to develop effective hemostatic products in battlefield rescue for noncompressible massive hemorrhage. Some previous research had concentrated on the modification of different materials to improve the hemostasis ability of sponges. Herein, to investigate the relationship between the taper of microchannels and hemostatic performance of porous sponges, gelatin methacryloyl-based sponges with designed conical microchannels and a disordered porous structure were prepared using the 3D printing method and freeze-drying technology. Experiments and theoretical model analysis demonstrated that the taper and distribution of microchannels in the sponge affected the water and blood absorption properties, as well as the expansion ability. In treatment of SD rat liver defect and SD rat liver perforation wound, GS-1 sponge with the taper (1/15) microchannels exhibited an excellent hemostatic effect with blood loss of 0.866 ± 0.093 g and a hemostasis time of 280 ± 10 s. Results showed that the hemostatic capacities of GelMA sponges were increased with the bottom diameter (taper) of conical microchannels. This is a potential strategy to develop designed taper sponges with designed taper microchannels for rapidly controlling hemorrhage.


Subject(s)
Gelatin , Hemostatics , Rats , Animals , Rats, Sprague-Dawley , Gelatin/pharmacology , Gelatin/chemistry , Hemostatics/pharmacology , Hemostatics/therapeutic use , Hemostatics/chemistry , Hemorrhage/drug therapy
8.
J Org Chem ; 87(24): 16328-16342, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36450140

ABSTRACT

Fused tricyclic hydronaphthofurans with multiple chiral centers are very important skeletons for constructing natural products; however, their synthesis is challenging, and a detailed understanding of the final formation mechanism remains elusive. In this work, density functional theory computations were employed to characterize rhodium-catalyzed [2+2+2] cycloaddition of enyne with terminal alkynes. The putative mechanism involves an initial ligand exchange, followed by oxidative cyclization, olefin insertion, and reductive elimination processes. Oxidative cyclization is shown to be the rate- and selectivity-determining step of the full chemical transformation, where the R substituent on terminal alkynes has a significant influence on the reaction selectivities. When R is an electron-donating group (OMe and Me), the ortho-substituted tricyclic hydronaphthofurans (P1) are predicted to be dominant; on the contrary, meta-substituted compounds P2 emerge as the main products when R is an electron-withdrawing group (NO2, CF3, and CN). Computational predictions for selectivity are in good agreement with experimental product ratios. Free energy barriers of the rate-determining step for P1 and P2 are ∼22.3-23.6 kcal mol-1, which align well with their experimental yields of ∼79-92% at 313 K after 0.5 h. The results also accurately reproduce experimentally observed regio-, chemo-, and enantioselectivities, with steric hindrance as well as electronic properties of the substrate and ligand markedly influencing the reaction rates and selectivities. The influence of computational methods is also explored and discussed in detail.

9.
J Phys Chem Lett ; 12(11): 2900-2904, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33724849

ABSTRACT

The cooperativity of a monomeric enzyme arises from dynamic correlation instead of spatial correlation and is a consequence of nonequilibrium conformation fluctuations. We investigate the conformation-modulated kinetics of human glucokinase, a monomeric enzyme with important physiological functions, using a five-state kinetic model. We derive the non-Michealis-Menten (MM) correction term of the activity (i.e., turnover rate), predict its relationship to cooperativity, and reveal the violation of conformational detailed balance. Most importantly, we reproduce and explain the observed resonance effect in human glucokinase (i.e., maximal cooperativity when the conformational fluctuation rate is comparable to the catalytic rate). With the realistic parameters, our theoretical results are in quantitative agreement with the reported measurement by Miller and co-workers. The analysis can be extended to a general chemical network beyond the five-state model, suggesting the generality of kinetic cooperativity and resonance.


Subject(s)
Glucokinase/metabolism , Biocatalysis , Glucokinase/chemistry , Glucose/metabolism , Humans , Kinetics , Protein Conformation
10.
ACS Omega ; 4(1): 465-474, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459344

ABSTRACT

Density functional theory calculations at IDSCRF-B3LYP/DZVP computational level were conducted on palladium-catalyzed regioselective B-H activation and diarylation of o-carboranes with aryl iodides in solution. Computational results indicate that this reaction follows a multistep mechanism and needs to get over several transition states before the final B(4,5)-diarylated o-carborane derivatives are formed. B-H activation, oxidation addition, and successive reduction of the Pd(II) catalyst involving a Pd(II)-Pd(IV)-Pd(II) catalytic cycle has been confirmed, in which AgOAc plays a crucial role. Electron-donating group on the cage carbon of o-carboranes is verified to be beneficial for its B-H activation and diarylation, while steric hindrance between the aryl and o-carboranyl groups retards it. Natural population analysis and Gibbs free energetic results predict consistent regioselectivities with experiments and manifest the pivotal role of electronic effect in controlling regioselective B-H activation of o-carboranes. These results are expected to shed some light on further improvement of experimental conditions and better controlling of regioselectivities.

11.
Dalton Trans ; 47(18): 6494-6498, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29693092

ABSTRACT

The in situ formation mechanisms of active Ni-carboryne species (COM1) and subsequent alkene/alkyne Ni-C bond insertion priorities, as well as relevant cycloaddition regioselectivities and kinetics, were investigated using the IDSCRF-B3LYP density functional theory (DFT) method, and all atoms were equitably treated at the DGDZVP level. The results reveal the o-carborane species to be energetically hedged into a four-step path (barrier heights 5.3, 19.7, 18.4 and 0.3 kcal mol-1, respectively) prior to being transferred into the active Ni-carboryne species (COM1) with the assistance of nBuLi and NiCl2(PPh3)2 at room temperature. In direct agreement with empirical trends, alkene insertion into Ni-C bonds on COM1 is exclusively favoured over the competing alkyne insertion. Electronic structure analyses of the corresponding transition structures showed that the preference of alkenes to alkynes is due to different bonding characteristics during this insertion process, namely, back donation for alkenes but donation for alkyne insertion, as evidenced by molecular graphics and NBO charge distributions. Subsequent alkyne additions (i.e. post alkene insertion) arise as the rate-determining step (RDS) for each of the five different reactions (a-e) explored. The solution free-energy barriers of these RDSs (30.5-38.5 kcal mol-1) were in quantitative agreement with their corresponding experimental yields, evidencing the reliability of the DFT results to reproduce chemical phenomena and energetic trends in real Ni-catalysed carboryne-alkene/alkyne cycloadditions.

12.
Org Lett ; 19(16): 4315-4318, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28777586

ABSTRACT

Caesalpinnone A (1), an unprecedented hybrid of flavan and chalcone, possessing a 10,11-dioxatricyclic [5.3.3.01,6]tridecane-bridged system, and caesalpinflavans A-C (2-4), three new hybrid flavan-chalcones, were isolated from the twigs and leaves of Caesalpinia enneaphylla. Their structures were elucidated by a combination of spectroscopic analyses and single-crystal X-ray diffraction. Caesalpinnone A showed the highest cytotoxicity against the HL-60, SMMC-7721, A-549, MCF-7, and SW-480 human tumor cell lines with an IC50 in the range of 0.54-0.87 µM.

13.
Chemistry ; 22(43): 15396-15403, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27620274

ABSTRACT

Chemoselectivities of five experimentally realised CpRuCl(PPh3 )2 /MeI-catalysed couplings of 7-azabenzo-norbornadienes with selected alkynes were successfully resolved from multiple reaction pathway models. Density functional theory calculations showed the following mechanistic succession to be energetically plausible: (1) CpRuI catalyst activation; (2) formation of crucial metallacyclopentene intermediate; (3) cyclobutene product (P2) elimination (ΔGRel(RDS) ≈11.9-17.6 kcal mol-1 ). Alternative formation of dihydrobenzoindole products (P1) by isomerisation to azametalla-cyclohexene followed by subsequent CpRuI release was much less favourable (ΔGRel(RDS) ≈26.5-29.8 kcal mol-1 ). Emergent stereoselectivities were in close agreement with experimental results for reactions a, b, e. Consequent investigations employing dispersion corrections similarly support the empirical findings of P1 dominating in reactions c and d through P2→P1 product transformations as being probable (ΔG≈25.3-30.1 kcal mol-1 ).

14.
Fitoterapia ; 112: 233-6, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27345940

ABSTRACT

Caesalpinone A (1), a new type of gorgonane sesquiterpenoid containing an unprecedented 1,15-bridge, along with ten known sesquiterpenoids (2-11) were isolated from the pods of Caesalpinia spinosa Kuntze (Tara). The structure of caesalpinone A was elucidated based on its 1D and 2D NMR spectra. The absolute configuration of 1 was assigned by the comparison of the experimental and calculated electronic circular dichroism spectra. Compound 1 was evaluated for the inhibitory activities against five human tumor cell lines. The sesquiterpenoids of isodaucane skeleton and caryolane skeleton were isolated from Caesalpinia genus for the first time. Compounds 5-9 were firstly reported from Tara.


Subject(s)
Caesalpinia/chemistry , Diterpenes/chemistry , Seeds/chemistry , Sesquiterpenes/chemistry , Cell Line, Tumor , Diterpenes/isolation & purification , Humans , Molecular Structure , Sesquiterpenes/isolation & purification
15.
J Org Chem ; 80(18): 9108-17, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26270257

ABSTRACT

Competing reaction mechanisms, substituent effects, and regioselectivities of Ni(PPh3)2-catalyzed [2 + 2 + 2] carboryne-alkyne cycloadditions were characterized by density functional theory using the real chemical systems and solvent effects considered. A putative mechanism involving the following steps was characterized: (1) exothermic carboryne-catalyst complexation and nucleophilic attack by the first alkyne; (2) insertion of the second alkyne, the rate-determining step (RDS) in all four reactions studied; (3) isomerization of reactant-bound complexes; and (4) product elimination and catalyst regeneration. The RDS in three reactions is mediated by free energy barriers of 27.2, 31.1, and 36.6 kcal·mol(-1), representative of the corresponding experimental yields of 67, 54, and 33%, respectively. A fourth reaction with 0% experimental yield showed representative RDS free energy barriers of 60.4 kcal·mol(-1), which are difficult to surmount even at 90 °C. Alternative pathways leading to differing isomers were similarly characterized and successfully reproduced experimentally determined product regioselectivities. Kinetic data derived from free energy barriers are in quantitative agreement (< ± 0.75-3.0 kcal·mol(-1)) of the experimental times, affirming the theoretical results as representative of the real chemical transformations. Complementary determinations show the use of truncated models (Ni(PMe3)2, Ni(PH3)2) causes the RDS to vary from step 2 (alkyne insertion) to step 1 (alkyne attack), highlighting the need to employ real chemical systems in modeling these reactions.

16.
Dalton Trans ; 43(37): 13924-31, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25111133

ABSTRACT

Intensely luminescent 1,8-naphthyridine-BF2 complexes 1-9 containing terminal bidentate N^N^O and/or N^C^O groups are synthesized and structurally characterized by X-ray diffraction, electrospray ionization mass spectrometry, (1)H and (19)F NMR spectroscopy and elemental analysis. Complexes 1-4 are synthesized from 2-acetamino-1,8-naphthyridine derivatives by a facile route. Selective bonding modes and the chemical stability of complexes 5 and 6 obtained by reacting BF3·Et2O with 1,8-naphthyridine derivatives bearing dual-functional groups (N^C^O and N^N^O) are investigated by crystal structure analysis and time-dependent density functional theory calculations. The products containing a BF2 core bound to a N^C^O chelating group are energetically favorable and can expand the range of derivatives by substitution at the 2-position. In this regard, a free -NH2 group at the 2-position of complex 7 obtained from 5 can be functionalized under a variety of pH conditions to generate complexes 8 and 9, which bear flexible coordination arms that can be used to recognize certain transition metals. The photophysical properties of the complexes are examined in solution and solid state at room temperature. Compared with those of the starting naphthyridine-based compounds, the naphthyridine-BF2 complexes display desirable light-absorbing properties and intense solution and solid-state emission with large Stokes shifts. Complex 4 in solution exhibited an emission quantum yield of 0.98. In complexes 5-9, the binding sites for the BF2 core change from N^N^O to N^C^O, which leads to red shifts of absorption and emission, excellent chemical stability and high emission quantum yields.

17.
J Asian Nat Prod Res ; 15(11): 1210-3, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23822190

ABSTRACT

A new naphtho[1,2-b]furan, 2,9-dihydroxy-7-methoxy-4-methylnaphtha[1,2-b]furan-3(2H)-one (1), along with 10 known compounds vanillic acid (2), naringenin (3), glyceryl-1-tetracosanoate (4), moracin J (5), 1,3,8-trihydroxyanthraquinone (6), esculetin (7), mauritianin (8), kaempferol 3-neohesperidoside (9), ß-sitosterol (10), and ß-daucosterol (11), was isolated from the leaves of Cassia fistula. The structure of the new compound was determined by NMR and X-ray analysis. Compounds 1, 3, 5-9 were isolated from this plant for the first time. The naphtha[1,2-b]furan was firstly isolated from the natural resources.


Subject(s)
Cassia/chemistry , Drugs, Chinese Herbal/isolation & purification , Furans/isolation & purification , Naphthalenes/isolation & purification , Drugs, Chinese Herbal/chemistry , Furans/chemistry , Kaempferols/chemistry , Kaempferols/isolation & purification , Molecular Structure , Naphthalenes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Plant Leaves/chemistry , Sitosterols/chemistry , Sitosterols/isolation & purification
18.
Org Lett ; 14(20): 5226-9, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23050580

ABSTRACT

Novel N,O-chelated naphthyridine-BF(2) complexes with push-pull structures have been synthesized and characterized. Spectral investigations on these complexes reveal that photoinduced intramolecular charge transfer occurs and results in a large Stokes shift, which is further supported by density functional theory based theoretical calculations.


Subject(s)
Boron Compounds/chemistry , Chelating Agents/chemistry , Naphthyridines/chemical synthesis , Electrons , Models, Molecular , Molecular Structure , Nitrogen/chemistry , Oxygen/chemistry , Photochemical Processes , Surface Properties
19.
J Phys Condens Matter ; 23(49): 495302, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22101167

ABSTRACT

In the present work, we study theoretically the electron wave's focusing phenomenon in a single-layered graphene pn junction (PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations (Cheianov et al 2007 Science, 315, 1252). In addition, we find that, for a symmetric PNJ, 1/4 of total electric current radiated from the source electrode can be collected by the drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by the present analytical method provide a general design rule for an electric lens based on negative refractory index systems.


Subject(s)
Electric Conductivity , Electricity , Electrodes , Graphite/chemistry , Lenses , Models, Theoretical , Humans
20.
Dalton Trans ; 40(28): 7365-74, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21681325

ABSTRACT

Two novel facial-capping tris-naphthyridyl compounds, 2-chloro-5-methyl-7-((2,4-dimethyl-1,8-naphthyridin-7(1H)-ylidene)(2,4-dimethyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyridine (L(1)) and 2-chloro-7-((2-methyl-1,8-naphthyridin-7(1H)-ylidene)(2-methyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyridine (L(2)), as well as their Cu(i) and Pb(ii) complexes, [CuL(a)(PPh(3))]BF(4) (1) (PPh(3) = triphenylphosphine, L(a) = bis(2,4-dimethyl-1,8-naphthyridin-7-yl)(2-chloro-5-methyl-1,8-naphthyridin-7-yl)methane), [CuL(b)(PPh(3))]BF(4) (2) (L(b) = bis(2-methyl-1,8-naphthyridin-7-yl)(2-chloro-1,8-naphthyridin-7-yl)methane), [Pb(OL(a))(NO(3))(2)] (3) (OL(a) = bis(2,4-dimethyl-1,8-naphthyridin-7-yl)(2-chloro-5-methyl-1,8-naphthyridin-7-yl)methanol) and [Pb(L(b))(2)][Pb(CH(3)OH)(NO(3))(4)] (4), have been synthesized and characterized by X-ray diffraction analysis, MS, NMR and elemental analysis. The structural investigations revealed that the transfer of the H-atom at the central carbon to an adjacent naphthyridine-N atom affords L(1) and L(2) possessing large conjugated architectures, and the central carbon atoms adopt the sp(2) hybridized bonding mode. The reversible hydrogen transfer and a geometric configuration conversion from sp(2) to sp(3) of the central carbon atom were observed when Pb(II) and Cu(I) were coordinated to L(1) or L(2). The molecular energy changes accompanying the hydrogen migration and titration of H(+) to different receptor-N at L(1) were calculated by density functional theory (DFT) at the SCRF-B3LYP/6-311++G(d,p) level in a CH(2)Cl(2) solution, and the observed lowest-energy absorption and emission for L(1) and L(2) can be tentatively assigned to an intramolecular charge transfer (ICT) transition in nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...