Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(20): 7643-7650, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784741

ABSTRACT

Attaining meticulous dominion over the binding milieu of catalytic metal sites remains an indispensable pursuit to tailor product selectivity and elevate catalytic activity. By harnessing the distinctive attributes of a Zr4+-anchored thiacalix[4]arene (TC4A) metalloligand, we have pioneered a methodology for incorporating catalytic Ag1+ sites, resulting in the first Zr-Ag bimetallic cluster, Zr2Ag7, which unveils a dualistic configuration embodying twin {ZrAg3(TC4A)2} substructures linked by an {AgSal} moiety. This cluster unveils a trinity of discrete Ag sites: a pair ensconced within {ZrAg3(TC4A)2} subunits and one located between two units. Expanding the purview, we have also crafted ZrAg3 and Zr2Ag2 clusters, meticulously mimicking the two Ag site environment inherent in the {ZrAg3(TC4A)2} monomer. The distinct structural profiles of Zr2Ag7, ZrAg3, and Zr2Ag provide an exquisite foundation for a precise comparative appraisal of catalytic prowess across three Ag sites intrinsic to Zr2Ag7. Remarkably, Zr2Ag7 eclipses its counterparts in the electroreduction of CO2, culminating in a CO faradaic efficiency (FECO) of 90.23% at -0.9 V. This achievement markedly surpasses the performance metrics of ZrAg3 (FECO: 55.45% at -1.0 V) and Zr2Ag2 (FECO: 13.09% at -1.0 V). Utilizing in situ ATR-FTIR, we can observe reaction intermediates on the Ag sites. To unveil underlying mechanisms, we employ density functional theory (DFT) calculations to determine changes in free energy accompanying each elementary step throughout the conversion of CO2 to CO. Our findings reveal the exceptional proficiency of the bridged-Ag site that interconnects paired {ZrAg3(TC4A)2} units, skillfully stabilizing *COOH intermediates, surpassing the stabilization efficacy of the other Ag sites located elsewhere. The invaluable insights gleaned from this pioneering endeavor lay a novel course for the design of exceptionally efficient catalysts tailored for CO2 reduction reactions, emphatically underscoring novel vistas this research unshrouds.

2.
Inorg Chem ; 63(15): 6767-6775, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569160

ABSTRACT

Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a Mo2O4 structural unit and a Cu(I) alkynyl cluster into a structured framework. The resulting bimetallic cluster, Mo2Cu17, encapsulates a distinctive structure [Mo2O4Cu17(TC4A)4(PhC≡C)6], comprising a binuclear Mo2O4 subunit and a {Cu17(TC4A)2(PhC≡C)6} cluster, both shielded by thiacalix[4]arene (TC4A) and phenylacetylene (PhC≡CH). Expanding our exploration, we synthesized two homoleptic CuI alkynyl clusters coprotected by the TC4A and PhC≡C- ligands: Cu13 and Cu22. Remarkably, Mo2Cu17 demonstrates superior HER efficiency compared to its counterparts, achieving a current density of 10 mA cm-2 in alkaline solution with an overpotential as low as 120 mV, significantly outperforming Cu13 (178 mV) and Cu22 (214 mV) nanoclusters. DFT calculations illuminate the catalytic mechanism and indicate that the intrinsically higher activity of Mo2Cu17 may be attributed to the synergistic Mo2O4-Cu(I) coupling.

3.
Chem Sci ; 14(48): 14280-14289, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38098712

ABSTRACT

Skillfully engineering surface ligands at specific sites within robust clusters presents both a formidable challenge and a captivating opportunity. Herein we unveil an unprecedented titanium-oxo cluster: a calix[8]arene-stabilized metallamacrocycle (Ti16L4), uniquely crafted through the fusion of four "core-shell" {Ti4@(TBC[8])(L)} subunits with four oxalate moieties. Notably, this cluster showcases an exceptional level of chemical stability, retaining its crystalline integrity even when immersed in highly concentrated acid (1 M HNO3) and alkali (20 M NaOH). The macrocycle's surface unveils four specific, customizable µ2-bridging sites, primed to accommodate diverse carboxylate ligands. This adaptability is highlighted through deliberate modifications achieved by alternating crystal soaking in alkali and carboxylic acid solutions. Furthermore, Ti16L4 macrocycles autonomously self-assemble into one-dimensional nanotubes, which subsequently organize into three distinct solid phases, contingent upon the specific nature of the four µ2-bridging ligands. Notably, the Ti16L4 exhibit a remarkable capacity for photocatalytic activity in selectively reducing CO2 to CO. Exploiting the macrocycle's modifiable shell yields a significant boost in performance, achieving an exceptional maximum CO release rate of 4.047 ± 0.243 mmol g-1 h-1. This study serves as a striking testament to the latent potential of precision-guided surface ligand manipulation within robust clusters, while also underpinning a platform for producing microporous materials endowed with a myriad of surface functionalities.

4.
Chem Sci ; 14(37): 10212-10218, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37772117

ABSTRACT

The accurate identification of catalytic sites in heterogeneous catalysts poses a significant challenge due to the intricate nature of controlling interfacial chemistry at the molecular level. In this study, we introduce a novel strategy to address this issue by utilizing a thiacalix[4]arene (TC4A)-protected Ti-oxo core as a template for loading Ag1+ ions, leading to the successful synthesis of a unique Ag/Ti bimetallic nanocluster denoted as Ti8Ag8. This nanocluster exhibits multiple surface-exposed Ag sites and possesses a distinctive "core-shell" structure, consisting of a {Ti4@Ag8(TC4A)4} core housing a {Ti2O2@Ag4(TC4A)2} motif and two {Ti@Ag2(TC4A)} motifs. To enable a comprehensive analysis, we also prepared a Ti2Ag4 cluster with the same {Ti2O2@Ag4(TC4A)2} structure found within Ti8Ag8. The structural disparities between Ti8Ag8 and Ti2Ag4 provide an excellent platform for a comparison of catalytic activity at different Ag sites. Remarkably, Ti8Ag8 exhibits exceptional performance in the electroreduction of CO2 (eCO2RR), showcasing a CO faradaic efficiency (FECO) of 92.33% at -0.9 V vs. RHE, surpassing the FECO of Ti2Ag4 (69.87% at -0.9 V vs. RHE) by a significant margin. Through density functional theory (DFT) calculations, we unveil the catalytic mechanism and further discover that Ag active sites located at {Ti@Ag2(TC4A)} possess a higher εd value compared to those at {Ti2O2@Ag4(TC4A)2}, enhancing the stabilization of the *COOH intermediate during the eCO2RR. This study provides valuable insights into the accurate identification of catalytic sites in bimetallic nanoclusters and opens up promising avenues for efficient CO2 reduction catalyst design.

5.
Dalton Trans ; 52(17): 5438-5442, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37083046

ABSTRACT

Accurate manipulation of ligands at specific sites in robust clusters is attractive but difficult, especially for those ligands that coordinate in intricate binding patterns. By linking the shuttlecock-like {Cu4(µ4-Cl)TC4A} motif and the phenylphosphate (PhPO32-) ligand, we elaborately design and synthesize two Cu(II)-thiacalix[4]arene metallamacrocycles (MMCs), namely Cu12L3 and Cu16L4, which have regular triangular and quadrilateral topologies, respectively. While keeping the core intact, the Cl- and PhPO32- in those two MMCs, which coordinated in a µ4-bridging fashion, can be accurately substituted with salicylate ligands. Theoretical calculations have been carried out to reveal the effect of ligand tailoring on the electronic structure of clusters. Structural regulation can affect the catalytic activity of these clusters, which has been verified by using the clusters as catalysts for selective sulfide oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...