Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(33): 19965-19974, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35971867

ABSTRACT

The combination of piezoelectricity with a nontrivial topological insulating phase in two-dimensional (2D) systems, namely piezoelectric quantum spin Hall insulators (PQSHI), is intriguing for exploring novel topological states toward the development of high-speed and dissipationless electronic devices. In this work, we predict a PQSHI Janus monolayer VCClBr constructed from VCCl2, which is dynamically, mechanically and thermally stable. In the absence of spin orbital coupling (SOC), VCClBr is a narrow gap semiconductor with a gap value of 57 meV, which is different from Dirac semimetal VCCl2. The gap of VCClBr is due to a built-in electric field caused by asymmetrical upper and lower atomic layers, which is further confirmed by the external-electric-field induced gap in VCCl2. When including SOC, the gap of VCClBr is increased to 76 meV, which is larger than the thermal energy of room temperature (25 meV). The VCClBr is a 2D topological insulator (TI), which is confirmed by Z2 topological invariant and nontrivial one-dimensional edge states. It is proved that the nontrivial topological properties of VCClBr are robust against strain (biaxial and uniaxial cases) and external electric fields. Due to broken horizontal mirror symmetry, only an out-of-plane piezoelectric response can be observed, when a biaxial or uniaxial in-plane strain is applied. The predicted piezoelectric strain coefficients d31 and d32 are -0.425 pm V-1 and -0.219 pm V-1, respectively, and they are higher than or compared with those of many 2D materials. Finally, Janus monolayer VCFBr and VCFCl (dynamically unstable) are also constructed, and they are still PQSHIs. Moreover, the d31 and d32 of VCFBr and VCFCl are higher than those of VCClBr, and the d31 (absolute value) of VCFBr is larger than one. According to out-of-plane piezoelectric coefficients of VCXY (X ≠ Y = F, Cl and Br), CrX1.5Y1.5 (X = F, Cl and Br; Y = I) and NiXY (X ≠ Y = Cl, Br and I), it is concluded that the size of the out-of-plane piezoelectric coefficient has a positive relation with the electronegativity difference of X and Y atoms. Our studies enrich the diversity of Janus 2D materials, and open a new avenue in the search for PQSHI with a large out-of-plane piezoelectric response, which provides a potential platform in nanoelectronics.

2.
Phys Chem Chem Phys ; 23(45): 25994-26003, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34783808

ABSTRACT

To easily synthesize a piezoelectric quantum anomalous Hall insulator (PQAHI), the Janus monolayer Fe2IBr (FeI0.5Br0.5) as a representative PQAHI, is generalized to monolayer FeI1-xBrx (x = 0.25 and 0.75) with α and ß phases. By first-principles calculations, it is proved that monolayer FeI1-xBrx (x = 0.25 and 0.75) are dynamically, mechanically and thermally stable. They are excellent room-temperature PQAHIs with high Curie temperatures, sizable gaps and high Chern number (C = 2). Because the considered crystal structures of α and ß phases possess Mx and My mirror symmetries, the topological properties of monolayer FeI1-xBrx (x = 0.25 and 0.75) are maintained. Namely, if the constructed structures have Mx and My mirror symmetries, the mixing ratio of Br and I atoms can be generalized for other proportions. It is also found that different crystal phases have important effects on the out-of-plane piezoelectric response, and the piezoelectric strain coefficient, d32, of the ß phase is higher than or comparable with those of other known two-dimensional (2D) materials. To further confirm this idea, the physical and chemical properties of monolayer LiFeSe0.75S0.25 with α and ß phases, as a generalization of PQAHI LiFeSe0.5S0.5, is investigated, as it has a similar electronic structure, magnetic and topological properties as LiFeSe0.5S0.5. Our work provides a practical guide to achieve PQAHIs experimentally, and the combination of piezoelectricity, topological and ferromagnetic (FM) orders makes Fe2I2-based monolayers a potential platform for multi-functional spintronics and piezoelectric electronics.

3.
Nanoscale ; 13(30): 12956-12965, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34477779

ABSTRACT

A two-dimensional (2D) material with piezoelectricity, topological and ferromagnetic (FM) properties, namely a 2D piezoelectric quantum anomalous hall insulator (PQAHI), may open new opportunities to realize novel physics and applications. Here, by first-principles calculations, a family of 2D Janus monolayer Fe2IX (X = Cl and Br) with dynamic, mechanical, and thermal stabilities is predicted to be a room-temperature PQAHI. In the absence of spin-orbit coupling (SOC), the monolayer Fe2IX (X = Cl and Br) is in a half Dirac semimetal state. When the SOC is included, these monolayers become quantum anomalous Hall (QAH) states with sizable gaps (more than 200 meV) and two chiral edge modes (Chern number C = 2). It is also found that the monolayer Fe2IX (X = Cl and Br) possesses robust QAH states against the biaxial strain. By symmetry analysis, it is found that only an out-of-plane piezoelectric response can be induced by a uniaxial strain in the basal plane. The calculated out-of-plane d31 of Fe2ICl (Fe2IBr) is 0.467 pm V-1 (0.384 pm V-1), which is higher than or comparable with those of other 2D known materials. Meanwhile, using Monte Carlo (MC) simulations, the Curie temperature TC is estimated to be 429/403 K for the monolayer Fe2ICl/Fe2IBr at the FM ground state, which is above room temperature. Finally, the interplay of electronic correlations with nontrivial band topology is studied to confirm the robustness of the QAH state. The combination of piezoelectricity, topological and FM orders makes the monolayer Fe2IX (X = Cl and Br) become a potential platform for multi-functional spintronic applications with a large gap and high TC. Our work provides the possibility to use the piezotronic effect to control QAH effects, and can stimulate further experimental works.

4.
Phys Chem Chem Phys ; 22(48): 28359-28364, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33300909

ABSTRACT

The septuple-atomic-layer VSi2P4 with the same structure of experimentally synthesized MoSi2N4 is predicted to be a spin-gapless semiconductor (SGS) with the generalized gradient approximation (GGA). In this work, the biaxial strain is applied to tune the electronic properties of VSi2P4, and it spans a wide range of properties upon increasing the strain from a ferromagnetic metal (FMM) to SGS to a ferromagnetic semiconductor (FMS) to SGS to a ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS VSi2P4 with the strain range of 0% to 4%. The calculated piezoelectric strain coefficients d11 for 1%, 2% and 3% strains are 4.61 pm V-1, 4.94 pm V-1 and 5.27 pm V-1, respectively, which are greater than or close to a typical value of 5 pm V-1 for bulk piezoelectric materials. Finally, similar to VSi2P4, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the VSi2N4 monolayer. Our works show that VSi2P4 in the FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...