Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611547

ABSTRACT

The rapid production of hydrogen peroxide (H2O2) is a hallmark of plants' successful recognition of pathogen infection and plays a crucial role in innate immune signaling. Aquaporins (AQPs) are membrane channels that facilitate the transport of small molecular compounds across cell membranes. In plants, AQPs from the plasma membrane intrinsic protein (PIP) family are utilized for the transport of H2O2, thereby regulating various biological processes. Plants contain two PIP families, PIP1s and PIP2s. However, the specific functions and relationships between these subfamilies in plant growth and immunity remain largely unknown. In this study, we explore the synergistic role of AtPIP1;4 and AtPIP2;4 in regulating plant growth and disease resistance in Arabidopsis. We found that in plant cells treated with H2O2, AtPIP1;4 and AtPIP2;4 act as facilitators of H2O2 across membranes and the translocation of externally applied H2O2 from the apoplast to the cytoplasm. Moreover, AtPIP1;4 and AtPIP2;4 collaborate to transport bacterial pathogens and flg22-induced apoplastic H2O2 into the cytoplasm, leading to increased callose deposition and enhanced defense gene expression to strengthen immunity. These findings suggest that AtPIP1;4 and AtPIP2;4 cooperatively mediate H2O2 transport to regulate plant growth and immunity.

2.
Plant Direct ; 5(8): e338, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34430793

ABSTRACT

In rice (Oryza sativa), the PLASMA MEMBRANE INTRINSIC PROTEIN (PIP) family of aquaporin has 11 members, OsPIP1;1 to OsPIP1;3, and OsPIP2;1 to OsPIP2;8, which are hypothesized to facilitate the transport of H2O and other small compounds across cell membranes. To date, however, only OsPIP1;2, OsPIP2;1, and OsPIP2;4 have been demonstrated for substrate selectivity in their source plant (rice). In this study, OsPIP2;2 was characterized as the most efficient facilitator of H2O transport across cell membranes in comparison with the other 10 OsPIPs. In concomitant tests of all OsPIPs, four genes (OsPIP1;3, OsPIP2;1, OsPIP2;2, and OsPIP2;4) were induced to express in leaves of rice plants following a physiological drought stress, while OsPIP2;2 was expressed to the highest level. After de novo expression in frog oocytes and yeast cells, the four OsPIP proteins were localized to the plasma membranes in trimer and tetramer and displayed the activity to increase the membrane permeability to H2O. In comparison, OsPIP2;2 was most supportive to H2O import to oocytes and yeast cells. After de novo expression in tobacco protoplasts, OsPIP2;2 exceeded OsPIP1;3, OsPIP2;1, and OsPIP2;4 to support H2O transport across the plasma membranes. OsPIP2;2-mediated H2O transport was accompanied by drought-tolerant responses, including increases in concentrations of proline and polyamines, both of which are physiological markers of drought tolerance. In rice protoplasts, H2O transport and drought-tolerant responses, which included expression of marker genes of drought tolerance pathway, were considerably enhanced by OsPIP2;2 overexpression but strongly inhibited by the gene silencing. Furthermore, OsPIP2;2 played a role in maintenance of the cell membrane integrity and effectively protected rice cells from electrolyte leakage caused by the physiological drought stress. These results suggest that OsPIP2;2 is a predominant facilitator of H2O transport in relevance to drought tolerance in the plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...