Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 5(23): 6688-6694, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38024293

ABSTRACT

Transition-metal (TM)-doped metallo-borospherenes exhibit unique structures and bonding in chemistry which have received considerable attention in recent years. Based on extensive global minimum searches and first-principles theory calculations, we predict herein the first and smallest perfect cubic metallo-borospherenes Oh TM8B6 (TM = Ni (1), Pd (2), Pt (3)) and Oh Ni8B6- (1-) which contain eight equivalent TM atoms at the vertexes of a cube and six quasi-planar tetra-coordinate face-capping boron atoms on the surface. Detailed canonical molecular orbital and adaptive natural density partitioning bonding analyses indicate that Oh TM8B6 (1/2/3) as superatoms possess nine completely delocalized 14c-2e bonds following the 18-electron principle (1S21P61D10), rendering spherical aromaticity and extra stability to the complex systems. Furthermore, Ni8B6 (1) can be used as building blocks to form the three-dimensional metallic binary crystal NiB (4) (Pm3̄m) in a bottom-up approach which possesses a typical CsCl-type structure with an octa-coordinate B atom located exactly at the center of the cubic unit cell. The IR, Raman, UV-vis and photoelectron spectra of the concerned clusters are computationally simulated to facilitate their experimental characterization.

2.
Nanoscale ; 15(5): 2377-2383, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36648220

ABSTRACT

The recent discovery of lanthanide-metal-decorated metallo-borospherenes LM3B18- (LM = La, Tb) marks the onset of a new class of boron-metal binary nanomaterials. Using the experimentally observed or theoretically predicted borospherenes as ligands and based on extensive first-principles theory calculations, we predict herein a series of novel chiral metallo-borospherenes C2 Ni6 ∈ B39- (1), C1 Ni6 ∈ B41+ (3), C2 Ni6 ∈ B422+ (4), C2 Ni6 ∈ B42 (5), and C2 Ni8 ∈ B56 (6) as the global minima of the systems decorated with quasi-planar heptacoordinate Ni (phNi) centers in η7-B7 heptagons on the cage surfaces, which are found to be obviously better favoured in coordination energies than hexacoordinate Ni centers in previously reported D2d Ni6 ∈ B40 (2). Detailed bonding analyses indicate that these phNi-decorated metallo-borospherenes follow the σ + π double delocalization bonding pattern, with two effective (d-p)σ coordination bonds formed between each phNi and its η7-B7 ligand, rendering spherical aromaticity and extra stability to the systems. The structural motif in elongated axially chiral Ni6 ∈ B422+ (4), Ni6 ∈ B42 (5), and Ni8 ∈ B56 (6) can be extended to form the metallic phNi-decorated boron double chain (BDC) double-helix Ni4 ∈ B28 (2, 0) (P4̄m2) (8), triple-helix Ni6 ∈ B42 (3, 0) (P3̄m1) (9), and quadruple-helix Ni8 ∈ B56 (4, 0) (P4mm) (10) metallo-boronanotubes, which can be viewed as quasi-multiple-helix DNAs composed of interconnected BDCs decorated with phNi centers in η7-B7 heptagons on the tube surfaces in the atomic ratio of Ni : B = 1 : 7.

3.
Phys Chem Chem Phys ; 24(35): 21078-21084, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36017736

ABSTRACT

Extensive global minimum searches augmented with first-principles theory calculations performed in this work indicate that the experimentally observed perfect inverse sandwich lanthanide boride complexes D7h La2B7- (1), D8h La2B8 (3), D9h La2B9- (7) can be extended to their actinide counterparts C2v Ac2B7- (1'), D8h Ac2B8 (3'), D9h Ac2B9- (7') with a Bn monocyclic ring (n = 7-9) sandwiched by two Ac dopants. Such M2Bn-/0 inverse sandwiches (1/1', 3/3', 7/7') can be used as building blocks to generate the ground-state C2 La4B13- (2)/Ac4B13- (2'), D2 La4B15- (4)/Ac4B15- (4'), C3v/C3 La4B18 (5)/Ac4B18 (5'), Oh Ac7B24+ (6'), Oh Ac7B24, Td Ac4B24 (8'), C1 La5B24+ (9)/Ac5B24+ (9'), and Td Ac4B29- (10') which are based on boron frameworks consisting of multiple conjoined Bn rings (n = 7-9). Detailed bonding analyses show that effective (d-p)σ, (d-p)π and (d-p)δ coordination bonds are formed between the Bn rings and metal doping centers, conferring three-dimensional aromaticity and extra stability to the systems. In particular, the perfect body-centered cubic Oh Ac7B24+ (6') and Oh Ac7B24 with six conjoined B8 rings can be extended in x, y, and z dimensions to form one-dimensional Ac10B32 (11'), two-dimensional Ac3B10 (12'), and three-dimensional AcB6 (13') nanomaterials, presenting a B8-based bottom-up approach from metal boride nanoclusters to their low-dimensional nanomaterials.

4.
Nanoscale ; 14(31): 11443-11451, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35904368

ABSTRACT

Inspired by the experimentally observed bilayer B48-/0 and theoretically predicted bilayer B50-B72 and based on extensive density functional theory calculations, we report herein a series of novel medium-sized bilayer boron nanoclusters C1 B84 (I), C2v B86 (II), C1 B88 (III), C1 B90 (IV), C1 B92 (V), C1 B94 (VI), C2v B96 (VII), and C1 B98 (VIII) which are the most stable isomers of the systems reported to date effectively stabilized by optimum numbers of interlayer B-B σ bonds between the inward-buckled atoms on top and bottom layers. Detailed bonding analyses indicate that these bilayer species follow the universal bonding pattern of σ + π double delocalization, rendering three-dimensional aromaticity in the systems. More interestingly, the AA-stacked bilayer structural motif in B96 (VII) with a B72 bilayer hexagonal prism at the center can be extended to form bilayer C2 B128 (IX), D2h B214 (X), C2v B260 (XI), D2h B372 (XII), and D2 B828 (XIII) which contain one or multiple conjoined B72 bilayer hexagonal prisms sharing interwoven zig-zag boron triple chains between them. Such bilayer species or their close-lying AB isomers can be viewed as embryos of the newly reported most stable freestanding BL-α+ bilayer borophenes and quasi-freestanding bilayer borophenes on Ag(111) which are composed of interwoven zig-zag boron triple chains shared by conjoined BL B72 hexagonal prisms, presenting a bottom-up approach from medium-sized bilayer boron nanoclusters to two-dimensional bilayer borophene nanomaterials.

5.
Phys Chem Chem Phys ; 24(6): 3918-3923, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35094042

ABSTRACT

It is well-known that transition-metal-doping induces dramatic changes in the structures and bonding of small boron clusters, as demonstrated by the newly observed perfect inverse sandwich D8h [La(η8-B8)La] and D9h [La(η9-B9)La]-. Based on extensive global minimum searches and first-principles theory calculations, we predict herein the possibility of perfect endohedral trihedral metallo-borospherene D3h La@[La5&B30] (1, 3A'1) and its monoanion Cs La@[La5&B30]- (2, 2A') and dianion D3h La@[La5&B30]2- (3, 1A'1). These La-doped boron clusters are composed of three inverse sandwich La(η8-B8)La on the waist and two inverse sandwich La(η9-B9)La on the top and bottom which share one apex La atom at the center and six periphery B2 units between neighboring η8-B8 and η9-B9 rings, with three octo-coordinate La atoms and two nona-coordinate La atoms as integrated parts of the cage surface. Detailed adaptive natural density partitioning (AdNDP) and iso-chemical shielding surface (ICSS) analyses indicate that La@[La5&B30]0/-/2- (1/2/3) are spherically aromatic in nature. The one-dimensional nanowire La4B21 (4, P31m) constructed from D3h La@[La5&B30] (1) along the C3 axis of the system appears to be metallic. The IR and Raman spectra of La@[La5&B30] (1) and photoelectron spectroscopy of the slightly distorted Cs La@[La5&B30]- (2) are theoretically simulated to facilitate their spectroscopic characterizations.

6.
Nanoscale ; 13(6): 3868-3876, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33566053

ABSTRACT

Size-selected negatively-charged boron clusters (Bn-) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B39-, the global minimum of B40- was in fact planar. Only in the neutral form did the B40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B48- cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B48- exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B48- anion and the B48 neutral possess a bilayer-type structure with D2h symmetry. The simulated spectrum of the D2h B48- agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B48-/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes.

7.
J Mol Model ; 26(8): 199, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32638090

ABSTRACT

B-C binary monolayers and fullerenes (borafullerenes) have received considerable attention in recent years. Inspired by the newly reported B4C3 semiconducting boron carbide monolayer isovalent to graphene (Tian et al., Nanoscale, 2019, 11, 11099), we predict herein at density functional theory level a new class of borafullerenes (1-8) following the isolated B4C3 hexagonal pyramid rule. The spherically aromatic borafullerenes C5h B20C35 (1), C5 B20C45 (2), C5h B20C55 (3), and C5 B20C65 (4) isovalent to C50, C60, C70, and C80, respectively, possess five isolated B4C3 hexagonal pyramids evenly distributed on the waist around the C5 molecular axis, while S10 B40C50 (5), C5 B40C60 (6), S10 B40C70 (7), and C5 B40C80 (8) encompass ten isolated B4C3 pyramids symmetrically distributed on the cage surface. Detailed orbital and bonding analyses indicate that these borafullerenes follow similar σ and π-bonding patterns with their fullerene analogues, with three delocalized 7c-2e π bonds forming a local π-aromatic system over each isolated B4C3 hexagonal pyramid. The calculated formation energies of the (B4C3)nC60-6n (n = 1-5) series isovalent to C60 appear to increase almost linearly with the number of isolated B4C3 pyramids in the system. The IR, Raman, and UV-vis spectra of the prototypical B20C45 (2) are theoretically simulated to facilitate its future spectral characterization.

8.
RSC Adv ; 10(21): 12469-12474, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-35497573

ABSTRACT

La-doped boron nanoclusters have received considerable attention due to their unique structures and bonding. Inspired by recent experimental observations of the inverse sandwich D 8h La2B8 (1) and triple-decker C 2v La3B14 - (2) and based on extensive global searches and first-principles theory investigations, we present herein the possibility of the perfect cubic La-doped boron clusters O h La6&[La@B24]+ (3, 1A1g) and O h La6&[La@B24] (4, 2A2g) which appear to be the embryos of the metallic one-dimensional La10B32 (5) nanowire, two-dimensional La3B10 (6) nanosheet, and three-dimensional LaB6 (7) nanocrystal, facilitating a bottom-up approach to build cubic lanthanide boride nanostructures from gas-phase clusters. Detailed molecular orbital and bonding analyses indicate that effective (d-p)σ, (d-p)π and (d-p)δ covalent coordination interactions exist in La6&[La@B24]+/0 (3/4) clusters, while the 1D La10B32 (5), 2D La3B10 (6), and 3D LaB6 (7) crystals exhibit mainly electrostatic interactions between the trivalent La centers and cubic B24 frameworks, with weak but discernible coordination contributions from La (5d) ← B (2p) back-donations. The IR and Raman spectra of La6&[La@B24]+/0 (3/4) and band structures of La10B32 (5) and La3B10 (6) are computationally simulated to facilitate their future characterizations.

9.
RSC Adv ; 10(17): 10129-10133, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-35498596

ABSTRACT

Since the discovery of the cage-like borospherenes D 2d B40 -/0 and the first axially chiral borospherenes C 3/C 2 B39 -, a series of fullerene-like boron clusters in different charge states have been reported in theory. Based on extensive global minimum searches and first-principles theory calculations, we present herein two new axially chiral members C 2 B31 + (I) and C 2 B32 (VI) to the borospherene family. B31 + (I) features two equivalent heptagons on the top and one octagon at the bottom on the cage surface, while B32 (VI) possesses two equivalent heptagons on top and two equivalent heptagons at the bottom. Detailed bonding analyses show that both sea-shell-like B31 + (I) and B32 (VI) follow the universal σ + π double delocalization bonding pattern of the borospherene family, with ten delocalized π bonds over a σ skeleton, rendering spherical aromaticity to the systems. Extensive molecular dynamics simulations show that these novel borospherenes are kinetically stable below 1000 K. The IR, Raman, and UV-vis spectra of B31 + (I) and B32 (VI) are computationally simulated to facilitate their future experimental characterizations.

10.
Nanoscale ; 11(44): 21311-21316, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31670360

ABSTRACT

Lanthanide-boron binary clusters possess interesting structures and bonding which may provide insights into designing new boride nanomaterials. Inspired by the recently discovered mono-decker inverse sandwich D9h La2B9- (1A'1) (1) and based on the extensive first-principles theory calculations, we predict herein the possible existence of a series of bi-decker inverse sandwich di-lanthanide boron complexes including D9d La2[B18] (3A1g) (2), D9d La2[B18]2- (1A1g) (3), and C2h La2[B2@B18] (1Ag) (4) which all contain a tubular Bn ligand (n = 18, 20) sandwiched by two La atoms at the two ends. In these novel clusters, La2[B2@B18] (4) as a tubular molecular rotor with the smallest core-shell structure reported to date in boron-based nanoclusters possesses a B2-bar rotating constantly and almost freely inside the B18 tube around it at room temperature. Detailed bonding analyses indicate that these complexes are stablized by effective (d-p)σ, (d-p)π, and (d-p)δ coordination interactions between the La centers and Bn bi-decker ligand. Six multi-center fluxional σ-bonds between the B2-core and B18 tube in La2[B2@B18] (4) are found to be responsible for its unique fluxional behaviors. The IR and Raman spectra of the concerned species are simulated to facilitate their experimental characterization.

11.
Phys Chem Chem Phys ; 21(40): 22611-22617, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31589225

ABSTRACT

As the first all-boron fullerene observed in experiments, cage-like borospherene B40 has attracted considerable attention in recent years. However, B40 has been proved to be chemically reactive and tends to coalesce with one another via the formation of covalent bonds. We explore herein the possibility of low-dimensional functional networks of B40 with effective transition-metal intercalations. We find that the four equivalent B7 heptagons on the waist of each B40 can serve as effective ligands to coordinate various transition metal centers in exohedral motifs. The intercalated metal atoms entail these networks with a variety of intriguing properties. The two-dimensional (2D) Cr2B40 network is a ferromagnetic metal while the 2D Zn2B40 network becomes semiconducting. In contrast, other 2D M2B40 (M = Sc, Ti, V, Mn, Fe, Co, Ni and Cu) networks and 1D CrB40 belong to nonmagnetic metals. The 3D Cr3B40 network is a magnetic metal. This work presents the viable possibility of assembling Mn&B40 metalloborospherenes into stable functional nanomaterials via effective transition-metal intercalations with potential applications in electronic and spintronic devices.

12.
J Comput Chem ; 40(11): 1227-1232, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30776133

ABSTRACT

Detailed molecular orbital and bonding analyses reveal the existence of both fluxional σ- and π-bonds in the global minima Cs B 18 2 - (1) and Cs MB18 (3) and transition states Cs B 18 2 - (2) and Cs MB 18 - (4) of B 18 2 - dianion and MB 18 - monoanions (M = K, Rb, and Cs). It is the fluxional bonds that facilitate the fluxional behaviors of the quasi-planar B 18 2 - and half-sandwich MB 18 - which possess energy barriers smaller than the difference of the corresponding zero-point corrections. © 2019 Wiley Periodicals, Inc.

13.
J Comput Chem ; 40(9): 966-970, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30341943

ABSTRACT

Based on detailed bonding analyses on the fluxional behaviors of planar B19 - , tubular Ta@B20 - , and cage-like B39 - , we propose the concept of fluxional bonds in boron nanoclusters as an extension of the classical localized bonds and delocalized bonds in chemistry. © 2018 Wiley Periodicals, Inc.

14.
Phys Chem Chem Phys ; 20(38): 25009-25015, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30246197

ABSTRACT

Transition-metal doping leads to dramatic structural changes and results in novel bonding patterns in small boron clusters. Based on the experimentally derived mono-ring planar C9v Ta©B92- (1) and extensive first-principles theory calculations, we present herein the possibility of high-symmetry double-ring tubular D9d Ta@B183- (2) and C9v Ta2@B18 (3) and triple-ring tubular D9h Ta2@B27+ (4), which may serve as embryos of single-walled metalloboronanotube α-Ta3@B48(3,0) (5) wrapped up from the recently observed most stable free-standing boron α-sheet on a Ag(111) substrate with a transition-metal wire (-Ta-Ta-) coordinated inside. Detailed bonding analyses indicate that, with an effective dz2-dz2 overlap on the Ta-Ta dimer along the C9 molecular axis, both Ta2@B18 (3) and Ta2@B27+ (4) follow the universal bonding pattern of σ + π double delocalization with each Ta center conforming to the 18-electron rule, providing tubular aromaticity to these Ta-doped boron complexes with magnetically induced ring currents. The IR, Raman, and UV-vis spectra of 3 and 4 are computationally simulated to facilitate their future experimental characterization.

15.
Phys Chem Chem Phys ; 20(22): 15344-15349, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29796458

ABSTRACT

Shortly after the discovery of all-boron fullerenes D2d B40-/0 (borospherenes), the first axially chiral borospherenes C3/C2 B39- were characterized in experiments in 2015. Based on extensive global minimum searches and first-principles theory calculations, we present herein two new axially chiral members to the borospherene family: the aromatic cage-like C2 B34(1) and C2 B35+(2). Both B34(1) and B35+(2) feature one B21 boron triple chain on the waist and two equivalent heptagons and hexagons on the cage surface, with the latter being obtained by the addition of B+ into the former at the tetracoordinate defect site. Detailed bonding analyses show that they follow the universal bonding pattern of σ + π double delocalization, with 11 delocalized π bonds over a σ skeleton. Extensive molecular dynamics simulations show that these borospherenes are kinetically stable below 1000 K and start to fluctuate at 1200 K and 1100 K, respectively. The IR, Raman, and UV-vis spectra of 1 and 2 are computationally simulated to facilitate their experimental characterization.

16.
Phys Chem Chem Phys ; 20(22): 15330-15334, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29796470

ABSTRACT

Recent joint experimental and theoretical investigations have shown that seashell-like C2 B28 is the smallest neutral borospherene reported to date, while seashell-like Cs B29- (1-) as a minor isomer competes with its quasi-planar counterparts in B29- cluster beams. Extensive global minimum searches and first-principles theory calculations performed in this work indicate that with two valence electrons detached from B29-, the B29+ monocation favors a seashell-like Cs B29+ (1+) much different from Cs B29- (1-) in geometry which is overwhelmingly the global minimum of the system with three B7 heptagonal holes in the front, on the back, and at the bottom, respectively, unveiling an interesting charge-induced structural transition from Cs B29- (1-) to Cs B29+ (1+). Detailed bonding analyses show that with one less σ bond than B29- (1-), Cs B29+ (1+) also possesses nine delocalized π-bonds over its σ-skeleton on the cage surface with a σ + π double delocalization bonding pattern and follows the 2(n + 1)2 electron counting rule for 3D spherical aromaticity (n = 2). B29+ (1+) is therefore the smallest borospherene monocation reported to date which is π-isovalent with the smallest neutral borospherene C2 B28. The IR, Raman, and UV-vis spectra of B29+ (1+) are computationally simulated to facilitate its spectroscopic characterization.

17.
Nanoscale ; 10(16): 7451-7456, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29637201

ABSTRACT

Inspired by recent observations of the highest coordination numbers of CN = 10 in planar wheel-type complexes in D10h Ta@B10- and CN = 20 in double-ring tubular species in D10d Ta@B20- and theoretical prediction of the smallest endohedral metalloborospherene D2 Ta@B22- (1) with CN = 22, we present herein the possibility of larger endohedral metalloborospherenes C2 Ta@B23 (2), C2 Ta@B24+ (3), C2v Ta@B24- (4), C1 Ta@B25 (5), D2d Ta@B26+ (6), C2 Ta@B272+ (7), and C2 Ta@B283+ (8) based on extensive first-principles theory investigations. These cage-like Ta@Bqn complexes with B6 pentagonal or B7 hexagonal pyramids on their surface turn out to be the global minima of the systems with CN = 23, 24, 24, 25, 26, 27, and 28, respectively, unveiling the highest coordination number of CN = 28 in spherical environments known in chemistry. Detailed bonding analyses show that 1-8 as superatoms conform to the 18-electron configuration with a universal σ + π double delocalization bonding pattern. They are effectively stabilized via spd-π coordination interactions between the Ta center and ηn-Bn ligand which match both geometrically and electronically. Such complexes may serve as embryos of novel metal-boride nanomaterials.

18.
Phys Chem Chem Phys ; 19(39): 27025-27030, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28956884

ABSTRACT

Inspired by the recent discovery of the metal-centered tubular molecular rotor Cs B2-Ta@B18- with the record coordination number of CN = 20 and based on extensive first-principles theory calculations, we present herein the possibility of the largest tubular molecular rotors Cs B3-Ta@B18 (1) and C3v B4-Ta@B18+ (2) and smallest axially chiral endohedral metalloborospherenes D2 Ta@B22- (3 and 3'), unveiling a tubular-to-cage-like structural transition in metal-centered boron clusters at Ta@B22-via effective spherical coordination interactions. The highly stable Ta@B22- (3) as an elegant superatom, which features two equivalent corner-sharing B10 boron double chains interconnected by two B2 units with four equivalent B7 heptagons evenly distributed on the cage surface, conforms to the 18-electron configuration with a bonding pattern of σ + π double delocalization and follows the 2(n + 1)2 electron counting rule for spherical aromaticity (n = 2). Its calculated adiabatic detachment energy of ADE = 3.88 eV represents the electron affinity of the cage-like neutral D2 Ta@B22 which can be viewed as a superhalogen. The infrared, Raman, VCD, and UV-vis spectra of the concerned species are computationally simulated to facilitate their spectral characterizations.

19.
Phys Chem Chem Phys ; 19(34): 23213-23217, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28825431

ABSTRACT

Based on extensive global searches and first-principles theory calculations, we present herein the possibility of double-ring tubular (B2O2)n clusters (n = 6-42) (2-10) rolled up from the most stable one-dimensional (1D) BO double-chain ribbon (1) in boron monoxides. Tubular (3D) (B2O2)n clusters (n ≥ 6) are found to be systematically much more stable than their previously proposed planar (2D) counterparts, with a 2D-3D structural transition at B12O12 (2). Detailed bonding analyses on 3D (B2O2)n clusters (2-10) and their precursor 1D BO double-chain ribbon (1) reveal two delocalized B-O-B 3c-2e π bonds over each edge-sharing B4O2 hexagonal unit which form a unique 6c-4e o-bond to help stabilize the systems. The IR, Raman, UV-vis, and photoelectron spectra of the concerned species are computationally simulated to facilitate their experimental characterization.

20.
Sci Rep ; 7(1): 5701, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720806

ABSTRACT

With inspirations from recent discoveries of the cage-like borospherene B40 and perfectly planar Co ∈ B18- and based on extensive global minimum searches and first-principles theory calculations, we present herein the possibility of the novel planar Ni ∈ B18 (1), cage-like heteroborospherenes Nin ∈ B40 (n = 1-4) (2-5), and planar heteroborophenes Ni2 ∈ B14 (6, 7) which all contain planar or quasi-planar heptacoordinate transition-metal (phTM) centers in η7-B7 heptagons. The nearly degenerate Ni2 ∈ B14 (6) and Ni2 ∈ B14 (7) monolayers are predicted to be metallic in nature, with Ni2 ∈ B14 (6) composed of interwoven boron double chains with two phNi centers per unit cell being the precursor of cage-like Nin ∈ B40 (n = 1-4) (2-5). Detailed bonding analyses indicate that Nin ∈ B40 (n = 1-4) (2-5) and Ni2 ∈ B14 (6, 7) possess the universal bonding pattern of σ + π double delocalization on the boron frameworks, with each phNi forming three lone pairs in radial direction (3dz22, 3dzx2, and 3dyz2) and two effective nearly in-plane 8c-2e σ-coordination bonds between the remaining tangential Ni 3d orbitals (3dx2-y2 and 3dxy) and the η7-B7 heptagon around it. The IR, Raman, and UV-vis absorption spectra of 1-5 are computationally simulated to facilitate their experimental characterizations.

SELECTION OF CITATIONS
SEARCH DETAIL
...