Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 478(3): 1462-5, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27590584

ABSTRACT

The events culminating in ovulation are controlled by the cyclical actions of hormones such as Follical Stimulating Hormone (FSH) and Luteinizing Hormone (LH). The secondary messenger, cyclic AMP (cAMP) conveys the intracellular activity of these hormones. It is well established that a family of transcription factors facilitate cAMP mediated gene expression, yet it remains unknown how these factors directly affect ovulation. One of these factors, Inducible cAMP Early Repressor (ICER) has been implicated in the transcriptional regulation of cAMP inducible genes during folliculogenesis and ovulation. In order to better determine the role of ICER in ovarian function we have identified novel targets using a genome-wide approach. Using a modification of the chromatin immunoprecipitation (ChIP) assay we directly cloned and sequenced the immunoprecipitated ICER-associated DNAs from an immortalized mouse granulose cell line (GRMO2). The analysis of the immunoprecipitated DNA fragments has revealed that ICER's binding to DNA has the following distribution; 16% within the promoter region, 31% within an intron, 14% were not within a gene, 6% were within 20 kb of a promoter and 3% were within the 3' end of genes.


Subject(s)
Cyclic AMP Response Element Modulator/metabolism , Genetic Loci , Genome , Repressor Proteins/metabolism , Animals , Cell Line , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA , Gene Expression Regulation , Immunoprecipitation , Mice , Protein Binding/genetics , Reproducibility of Results , Sequence Analysis, DNA
2.
Nat Neurosci ; 11(3): 334-43, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18297067

ABSTRACT

Estrogens have long been implicated in influencing cognitive processes, yet the molecular mechanisms underlying these effects and the roles of the estrogen receptors alpha (ERalpha) and beta (ERbeta) remain unclear. Using pharmacological, biochemical and behavioral techniques, we demonstrate that the effects of estrogen on hippocampal synaptic plasticity and memory are mediated through ERbeta. Selective ERbeta agonists increased key synaptic proteins in vivo, including PSD-95, synaptophysin and the AMPA-receptor subunit GluR1. These effects were absent in ERbeta knockout mice. In hippocampal slices, ERbeta activation enhanced long-term potentiation, an effect that was absent in slices from ERbeta knockout mice. ERbeta activation induced morphological changes in hippocampal neurons in vivo, including increased dendritic branching and increased density of mushroom-type spines. An ERbeta agonist, but not an ERalpha agonist, also improved performance in hippocampus-dependent memory tasks. Our data suggest that activation of ERbeta can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognition.


Subject(s)
Estrogen Receptor beta/metabolism , Estrogens/metabolism , Hippocampus/metabolism , Memory/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , Animals , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Estradiol/metabolism , Estradiol/pharmacology , Estrogen Receptor beta/agonists , Estrogen Receptor beta/genetics , Estrogens/agonists , Estrogens/pharmacology , Female , Hippocampus/cytology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/drug effects , Neurons/cytology , Neurons/drug effects , Organ Culture Techniques , Ovariectomy , Phosphorylation/drug effects , Rats , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
3.
Biol Reprod ; 75(2): 279-88, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16625003

ABSTRACT

Cyclin D2 (Ccnd2) is an essential gene for folliculogenesis, as null mutation in mice impairs granulosa cell proliferation in response to FSH. Ccnd2 mRNA is induced during the estrus cycle by FSH and is rapidly inhibited by LH. Yet, the responsive elements and transcription factors accounting for the gene expression of cyclin D2 in the ovary have not been fully characterized. Using primary cultures of rat granulosa cells and immortalized mouse granulosa cells, we demonstrate a mechanism for the regulation of cyclin D2 at the level of transcription via a PKA-dependent signaling mechanism. The promoter activity of cyclin D2 was shown to be induced by FSH and the catalytic alpha subunit of PKA (PRKACA), and this activity was repressible by inducible cAMP early repressor (ICER), a cAMP response element (CRE) modulator isoform. In silico analysis of the mouse, rat, and human cyclin D2 promoters identified two CRE-binding protein sites, a conserved proximal element and a less conserved distal element relative to the translation start site. The mutation on the proximal element drastically decreases the effects of PRKACA and ICER on the promoter activity, whereas the mutation on the distal element did not contribute to the decrease in the promoter activity. Electrophoretic mobility shift assays and deoxyribonuclease footprint analysis confirmed ICER binding to the proximal element, and chromatin immunoprecipitation analysis demonstrated the occurrence of this binding in vivo. These results showed a CRE within the upstream region of Ccnd2 that is (at least partly) implicated in the stimulation and repression of cyclin D2 transcription. Finally, our data suggest that ICER involvement in the regulation of granulosa cell proliferation as overexpression of ICER results in the inhibition of PRKACA-induced DNA synthesis.


Subject(s)
Cyclic AMP Response Element Modulator/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Granulosa Cells/physiology , Animals , Binding Sites , Cells, Cultured , Cyclic AMP Response Element Modulator/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclin D2 , DNA/biosynthesis , Female , Gene Expression Regulation , Humans , Mice , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley , Repressor Proteins/genetics , Repressor Proteins/metabolism , Response Elements/genetics , Sequence Homology, Nucleic Acid , Signal Transduction , Transcription, Genetic
4.
J Biol Chem ; 277(45): 42733-40, 2002 Nov 08.
Article in English | MEDLINE | ID: mdl-12200454

ABSTRACT

3'-Untranslated regions (UTRs) of genes often contain key regulatory elements involved in gene expression control. A high degree of evolutionary conservation in regions of the 3'-UTR suggests important, conserved elements. In particular, we are interested in those elements involved in regulation of 3' end formation. In addition to canonical sequence elements, auxiliary sequences likely play an important role in determining the polyadenylation efficiency of mammalian pre-mRNAs. We identified highly conserved sequence elements upstream of the AAUAAA in three human collagen genes, COL1A1, COL1A2, and COL2A1, and demonstrate that these upstream sequence elements (USEs) influence polyadenylation efficiency. Mutation of the USEs decreases polyadenylation efficiency both in vitro and in vivo, and inclusion of competitor oligoribonucleotides representing the USEs specifically inhibit polyadenylation. We have also shown that insertion of a USE into a weak polyadenylation signal can enhance 3' end formation. Close inspection of the COL1A2 3'-UTR reveals an unusual feature of two closely spaced, competing polyadenylation signals. Taken together, these data demonstrate that USEs are important auxiliary polyadenylation elements in mammalian genes.


Subject(s)
3' Untranslated Regions/genetics , Collagen Type II/genetics , Collagen Type I/genetics , Poly A/genetics , Base Sequence , Cloning, Molecular , DNA Primers , Gene Expression Regulation , Humans , Molecular Sequence Data , RNA Precursors/genetics , RNA, Messenger/genetics , Signal Transduction/genetics , Transcription, Genetic
5.
Mol Cell Biol ; 22(1): 343-56, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11739746

ABSTRACT

Nuclear factor 90 (NF90) was originally isolated in a complex that binds to the antigen recognition response element (ARRE-2) present in the interleukin-2 promoter. To characterize the transcriptional properties of NF90 in mammalian cells, we examined its ability to modulate promoter function in cellular transfection assays. NF90-Gal4 fusion proteins inhibited transcription from the adenovirus major late promoter in a fashion that was dependent on Gal4 targeting. Conversely, NF90 activated the cytomegalovirus immediate-early promoter, to which it was not targeted. These effects required distinct but overlapping domains in the C terminus of NF90, which contains a functional nuclear localization signal and two double-stranded-RNA binding motifs. NF90 is present in cellular complexes together with the NF45 protein. Transfection assays showed that NF45 binds NF90 strongly and stimulates its ability to activate but not to inhibit gene expression. This report characterizes NF90 as both a positive and negative regulator of gene expression, depending on the promoter context, and suggests a role for NF45 as a regulator of NF90.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics , Adenoviridae/genetics , Amino Acid Sequence , Cell Line , Cytomegalovirus/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Genes, Reporter/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , Models, Genetic , Molecular Sequence Data , NFATC Transcription Factors , Nuclear Factor 45 Protein , Nuclear Factor 90 Proteins , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plasmids/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription, Genetic/physiology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...