Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5265, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067432

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7-9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.


Subject(s)
Carcinoma, Pancreatic Ductal/immunology , Immune Evasion , Neoplastic Stem Cells/immunology , Pancreatic Neoplasms/immunology , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Female , Humans , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Oxidative Phosphorylation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...