Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Chemosphere ; : 142528, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838868

ABSTRACT

Nitrous oxide (N2O) emissions in High Rate Algal Ponds (HRAP) can negatively affect the sustainability of algal-bacterial processes. N2O emissions from a pilot HRAP devoted to biogas upgrading and digestate treatment were herein monitored for 73 days. The influence of the pH (7.5, 8.5, and 9.5), nitrogen sources (100 mg/L of N-NO2-, N-NO3-, and N-NH4+) and illumination on N2O emissions from the algal-bacterial biomass of the HRAP was also assessed in batch tests. Significantly higher N2O gas concentrations of 311.8 ± 101.1 ppmv were recorded in the dark compared to the illuminated period (236.9 ± 82.6 ppmv) in the HRAP. The batch tests revealed that the highest N2O emission rates (49.4 mmol g-1 TSS·h-1) occurred at pH 8.5 in the presence of 100 mg N-NO2-/L under dark conditions. This study revealed significant N2O emissions in HRAPs during darkness.

2.
New Phytol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849316

ABSTRACT

The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.

3.
Bioresour Technol ; 403: 130846, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754561

ABSTRACT

This study evaluated the hydrogen production potential through lactate-driven dark fermentation (LD-DF) of organic wastes from solid waste treatment plants, including the organic fraction of municipal solid waste (OFMSW), mixed sewage sludge, and two OFMSW leachates. In initial batch fermentations, only OFMSW supported a significant hydrogen yield (70.1 ± 7.7 NmL-H2/g-VS added) among the tested feedstocks. Lactate acted as an important hydrogen precursor, requiring the presence of carbohydrates for sequential two-step lactate-type fermentation. The impact of operational pH (5.5-6.5) and initial total solids (TS) concentration (5-12.5 % w/w) was also evaluated using OFMSW as substrate, obtaining hydrogen yields ranging from 6.6 to 55.9 NmL-H2/g-VSadded. The highest yield occurred at 6.5 pH and 7.5 % TS. The LD-DF pathway was indicated to be present under diverse pH and TS conditions, supported by employing a specialized microbial consortium capable of performing LD-DF, along with the observed changes in lactate levels during fermentation.


Subject(s)
Fermentation , Hydrogen , Lactic Acid , Solid Waste , Hydrogen/metabolism , Lactic Acid/metabolism , Lactic Acid/biosynthesis , Hydrogen-Ion Concentration , Refuse Disposal/methods , Sewage , Biofuels
4.
Sci Total Environ ; 927: 172138, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582106

ABSTRACT

Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that could effectively replace fossil-based and non-biodegradable plastics. However, their production is currently limited by the high production costs, mainly due to the costly carbon sources used, low productivity and quality of the materials produced. A potential solution lies in utilizing cheap and renewable carbon sources as the primary feedstock during the biological production of PHAs, paving the way for a completely sustainable and economically viable process. In this review, the opportunities and challenges related to the production of polyhydroxyalkanoates using methane and volatile fatty acids (VFAs) as substrates were explored, with a focus on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The discussion reports the current knowledge about promising Type II methanotrophs, the impact of process parameters such as limiting nutrients, CH4:O2 ratio and temperature, the type of co-substrate and its concentration. Additionally, the strategies developed until now to enhance PHA production yields were also discussed.

6.
Chemosphere ; 356: 141950, 2024 May.
Article in English | MEDLINE | ID: mdl-38599326

ABSTRACT

Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-ß-hydroxybutyrate and poly-ß-hydroxybutyrate-co-ß-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9-18 $ kg-1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.


Subject(s)
Biodegradation, Environmental , Polyesters , Polyhydroxyalkanoates , Polyhydroxybutyrates , Polyesters/chemistry , Solvents/chemistry , Hydroxybutyrates/chemistry
7.
World Neurosurg ; 187: 70-81, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38561034

ABSTRACT

BACKGROUND: Phosphaturic Mesenchymal Tumors (PMTs) are rare mesenchymal neoplasms known for producing Tumor-induced Osteomalacia (TIO). TIO is an uncommon paraneoplastic syndrome characterized by radiographic evidence of inadequate bone mineralization and analytical abnormalites. METHODS: We sought to present a case of TIO caused by skull base PMT with intracranial extension, manifesting with pain, progressive weakness, and multiple bone fractures. Furthermore, a systematic review was performed, following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. A search was conducted in PubMed database with title/abstract keywords "Phosphaturic mesenchymal tumor" and "Osteomalacia." Search results were reviewed looking for intracranial or skull base tumors. RESULTS: Our systematic review included 29 reported cases of intracranial PMT. In the reviewed cases there was a significative female predominance with 22 cases (75,86%). Osteomalacia was presented in 25 cases (86,20%). Bone fractures were present in 10 cases (34,48%). The most common site of involvement was the anterior cranial fossa in 14 cases (48,27%). Surgery was performed in 27 cases (93,10%) with previous tumor embolization in 4 cases (13,79%). Total recovery of the presenting symptoms in the first year was achieved in 21 cases (72,41%). Recurrence of the disease was described in 6 cases (25%). CONCLUSIONS: Skull base PMTs with intracranial extension are extremely rare tumors. Most patients are middle-aged adults with a PMT predominantly located in anterior cranial fossa. Surgery is the current treatment of choice with optimal outcome at 1-year follow-up, although recurrence could be present in almost 25% of the cases.

8.
Sci Total Environ ; 929: 172599, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38657807

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is a biobased and biodegradable polymer that could efficiently replace fossil-based plastics. However, its widespread deployment is slowed down by the high production cost. In this work, the techno-economic assessment of the process for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from low-cost substrates, such as methane and valeric acid derived from the anaerobic digestion of organic wastes, is proposed. Several strategies for cost abatement, such as the use of a mixed consortium and a line for reagent recycling during downstream, were adopted. Different scenarios in terms of production, from 100 to 100,000 t/y, were analysed, and, for each case, the effect of the reactor volume (small, medium and large size) on the selling price was assessed. In addition, the effect of biomass concentration was also considered. Results show that the selling price of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is minimum for a production plant with 100,000 t/y capacity, accounting for 18.4 €/kg, and highly influenced by the biomass concentration since it can be reduced up to 8.6 €/kg by increasing the total suspended solids from 5 to 30 g/L, This adjustment aligns the breakeven point of PHBV with the reported average commercial price.


Subject(s)
Biomass , Bioreactors , Fatty Acids, Volatile , Methane , Polyesters , Polyhydroxybutyrates , Methane/analysis , Fatty Acids, Volatile/analysis , Biopolymers
9.
ACS Sustain Chem Eng ; 12(11): 4690-4699, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38516398

ABSTRACT

In this work, the potential of a synthetic coculture and a mixed methanotrophic consortium to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from renewable and waste-based feedstocks was assessed batchwise. Methylocystis parvuscocultivated with Rhodococcus opacus and a Methylocystis-enriched culture previously grown on methane were subjected to nutrient starvation in a medium enriched with valeric acid (30% w w-1 of Ctot) or with a VFAs mixture containing acetic, propionic, butyric, and valeric acids (15% w w-1 of Ctot) under a CH4:O2 or air atmosphere. For all test series, pH was adjusted to 7 after adding the cosubstrates, and a negligible substrate consumption or polymer production was considered the end point of the trial. Results showed that valeric acid promoted PHBV accumulation in both cultures regardless of the atmosphere. Interestingly, the mixture of VFAs supported PHBV accumulation only in the presence of methane. The highest PHBV contents for the coculture and the mixed consortium, equal to 73.7 ± 2.5% w w-1 and 49.6 ± 13% w w-1, respectively, were obtained with methane and the VFAs mixture. This study demonstrates the suitability of cocultures and biobased cosubstrates for the sustainable production of the biodegradable polymer PHBV.

11.
Bioresour Technol ; 400: 130646, 2024 May.
Article in English | MEDLINE | ID: mdl-38556063

ABSTRACT

The present study evaluated the production potential of CH4, carboxylic acids and alcohols from a mixed culture enriched using synthetic syngas. The influence of syngas concentration on the microbial community and products productivity and selectivity was investigated. The results demonstrated the enrichment of a mesophilic mixed culture capable of converting CO and H2 mainly to CH4 and acetate, along with butyrate. The selectivity values showed that acetate production was enhanced during the first cycle in all conditions tested (up to 20 %), while CH4 was the main product generated during following cycles. Concretely, CH4 selectivity remained unaffected by syngas concentration, reaching a stable value of 41.6 ± 2.0 %. On the other hand, butyrate selectivity was only representative at the highest syngas concentration and lower pH values (26.1 ± 5.8 %), where the H2 consumption was completely inhibited. Thus, pH was identified as a key parameter for both butyrate synthesis and the development of hydrogenotrophic activity.


Subject(s)
Fatty Acids, Volatile , Methane , Methane/metabolism , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration , Hydrogen/metabolism , Gases/metabolism , Bioreactors , Alcohols/metabolism , Acetates/metabolism , Butyrates/metabolism
12.
mSystems ; 9(2): e0107723, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38180324

ABSTRACT

A genome scale metabolic model of the bacterium Paracoccus denitrificans has been constructed. The model containing 972 metabolic genes, 1,371 reactions, and 1,388 unique metabolites has been reconstructed. The model was used to carry out quantitative predictions of biomass yields on 10 different carbon sources under aerobic conditions. Yields on C1 compounds suggest that formate is oxidized by a formate dehydrogenase O, which uses ubiquinone as redox co-factor. The model also predicted the threshold methanol/mannitol uptake ratio, above which ribulose biphosphate carboxylase has to be expressed in order to optimize biomass yields. Biomass yields on acetate, formate, and succinate, when NO3- is used as electron acceptor, were also predicted correctly. The model reconstruction revealed the capability of P. denitrificans to grow on several non-conventional substrates such as adipic acid, 1,4-butanediol, 1,3-butanediol, and ethylene glycol. The capacity to grow on these substrates was tested experimentally, and the experimental biomass yields on these substrates were accurately predicted by the model.IMPORTANCEParacoccus denitrificans has been broadly used as a model denitrifying organism. It grows on a large portfolio of carbon sources, under aerobic and anoxic conditions. These characteristics, together with its amenability to genetic manipulations, make P. denitrificans a promising cell factory for industrial biotechnology. This paper presents and validates the first functional genome-scale metabolic model for P. denitrificans, which is a key tool to enable P. denitrificans as a platform for metabolic engineering and industrial biotechnology. Optimization of the biomass yield led to accurate predictions in a broad scope of substrates.


Subject(s)
Paracoccus denitrificans , Paracoccus denitrificans/genetics , Bacteria/metabolism , Oxidation-Reduction , Carbon/metabolism , Formates/metabolism
13.
Sci Total Environ ; 917: 170367, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38278261

ABSTRACT

Global efforts in vaccination have led to a decrease in COVID-19 mortality but a high circulation of SARS-CoV-2 is still observed in several countries, resulting in some cases of severe lockdowns. In this sense, wastewater-based epidemiology remains a powerful tool for supporting regional health administrations in assessing risk levels and acting accordingly. In this work, a dynamic artificial neural network (DANN) has been developed for predicting the number of COVID-19 hospitalized patients in hospitals in Valladolid (Spain). This model takes as inputs a wastewater epidemiology indicator for COVID-19 (concentration of RNA from SARS-CoV-2 N1 gene reported from Valladolid Wastewater Treatment Plant), vaccination coverage, and past data of hospitalizations. The model considered both the instantaneous values of these variables and their historical evolution. Two study periods were selected (from May 2021 until September 2022 and from September 2022 to July 2023). During the first period, accurate predictions of hospitalizations (with an overall range between 6 and 171) were favored by the correlation of this indicator with N1 concentrations in wastewater (r = 0.43, p < 0.05), showing accurate forecasting for 1 day ahead and 5 days ahead. The second period's retraining strategy maintained the overall accuracy of the model despite lower hospitalizations. Furthermore, risk levels were assigned to each 1 day ahead prediction during the first and second periods, showing agreement with the level measured and reported by regional health authorities in 95 % and 93 % of cases, respectively. These results evidenced the potential of this novel DANN model for predicting COVID-19 hospitalizations based on SARS-CoV-2 wastewater concentrations at a regional scale. The model architecture herein developed can support regional health authorities in COVID-19 risk management based on wastewater-based epidemiology.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Wastewater , Communicable Disease Control , Neural Networks, Computer
14.
Chemosphere ; 351: 141250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242520

ABSTRACT

Cheese whey (CW) is a nutrient deficient dairy effluent, which requires external nutrient supplementation for aerobic treatment. CW, supplemented with ammonia, can be treated using aerobic granular sludge (AGS) in a sequencing batch reactor (SBR). AGS are aggregates of microbial origin that do not coagulate under reduced hydrodynamic shear and settle significantly faster than activated sludge flocs. However, granular instability, slow granulation start-up, high energy consumption and CO2 emission have been reported as the main limitations in bacterial AGS-SBR. Algal-bacterial granular systems have shown be an innovative alternative to improve these limitations. Unfortunately, algal-bacterial granular systems for the treatment of wastewaters with higher organic loads such as CW have been poorly studied. In this study, an algal-bacterial granular system implemented in a SBR (SBRAB) for the aerobic treatment of ammonia-supplemented CW wastewaters was investigated and compared with a bacterial granular reactor (SBRB). Mass balances were used to estimate carbon and nitrogen (N) assimilation, nitrification and denitrification in both set-ups. SBRB exhibited COD and ammonia removal of 100% and 94% respectively, high nitrification (89%) and simultaneous nitrification-denitrification (SND) of 23% leading to an inorganic N removal of 30%. The efficient algal-bacterial symbiosis in granular systems completely removed COD and ammonia (100%) present in the dairy wastewater. SBRAB microalgae growth could reduce about 20% of the CO2 emissions produced by bacterial oxidation of organic compounds according to estimates based on synthesis reactions of bacterial and algal biomass, in which the amount of assimilated N determined by mass balance was taken into account. A lower nitrification (75%) and minor loss of N by denitrifying activity (<5% Ng, SND 2%) was also encountered in SBRAB as a result of its higher biomass production, which could be used for the generation of value-added products such as biofertilizers and biostimulants.


Subject(s)
Microalgae , Wastewater , Sewage/microbiology , Nitrogen/analysis , Carbon , Symbiosis , Ammonia , Carbon Dioxide , Bioreactors , Nitrification , Bacteria , Denitrification , Waste Disposal, Fluid
16.
Chemosphere ; 345: 140483, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863205

ABSTRACT

Nowadays, people spend 80-90% of their time indoors, while recent policies on energy efficient and safe buildings require reduced building ventilation rates and locked windows. These facts have raised a growing concern on indoor air quality, which is currently receiving even more attention than outdoors pollution. Prevention is the first and most cost-effective strategy to improve indoor air quality, but once pollution is generated, a battery of physicochemical technologies is typically implemented to improve air quality with a questionable efficiency and at high operating costs. Biotechnologies have emerged as promising alternatives to abate indoor air pollutants, but current bioreactor configurations and the low concentrations of indoor air pollutants limit their widespread implementation in homes, offices and public buildings. In this context, recent investigations have shown that potted plants can aid in the removal of a wide range of indoor air pollutants, especially volatile organic compounds (VOCs), and can be engineered in aesthetically attractive configurations. The original investigations conducted by NASA, along with recent advances in technology and design, have resulted in a new generation of botanical biofilters with the potential to effectively mitigate indoor air pollution, with increasing public aesthetics acceptance. This article presents a review of the research on active botanical filters as sustainable alternatives to purify indoor air.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Humans , Air Pollution, Indoor/prevention & control , Bioreactors , Biotechnology , Electric Power Supplies
17.
Water Res ; 245: 120665, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37801795

ABSTRACT

Despite the potential of biogas from waste/wastewater treatment as a renewable energy source, the presence of pollutants and the rapid decrease in the levelized cost of solar and wind power constrain the use of biogas for energy generation. Biogas conversion into ectoine, one of the most valuable bioproducts (1000 €/kg), constitutes a new strategy to promote a competitive biogas market. The potential for a stand-alone 20 L bubble column bioreactor operating at 6% NaCl and two 10 L interconnected bioreactors (at 0 and 6% NaCl, respectively) for ectoine production from biogas was comparatively assessed. The stand-alone reactor supported the best process performance due to its highest robustness and efficiency for ectoine accumulation (20-52 mgectoine/gVSS) and CH4 degradation (up to 84%). The increase in N availability and internal gas recirculation did not enhance ectoine synthesis. However, a 2-fold increase in the internal gas recirculation resulted in an approximately 1.3-fold increase in CH4 removal efficiency. Finally, the recovery of ectoine through bacterial bio-milking resulted in efficiencies of >70% without any negative impact of methanotrophic cell recycling to the bioreactors on CH4 biodegradation or ectoine synthesis.


Subject(s)
Amino Acids, Diamino , Biofuels , Sodium Chloride , Bioreactors , Methane , Anaerobiosis
18.
Environ Res ; 239(Pt 2): 117376, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37832766

ABSTRACT

Most of methane (CH4) emissions contain low CH4 concentrations and typically occur at irregular intervals, which hinders the implementation and performance of methane abatement processes. This study aimed at understanding the metabolic mechanisms that allow methane oxidizing bacteria (MOB) to survive for long periods of time under methane starvation. To this aim, we used an omics-approach and studied the diversity and metabolism of MOB and non-MOB in bioreactors exposed to low CH4 concentrations under feast-famine cycles of 5 days and supplied with nutrient-rich broth. The 16S rRNA and the pmoA transcripts revealed that the most abundant and active MOB during feast and famine conditions belonged to the alphaproteobacterial genus Methylocystis (91-65%). The closest Methylocystis species were M. parvus and M. echinoides. Nitrifiers and denitrifiers were the most representative non-MOB communities, which likely acted as detoxifiers of the system. During starvation periods, the induced activity of CH4 oxidation was not lost, with the particulate methane monooxygenase of alphaproteobacterial MOB playing a key role in energy production. The polyhydroxyalkanoate and nitrification metabolisms of MOB had also an important role during feast-famine cycles, maintaining cell viability when CH4 concentrations were negligible. This research shows that there is an emergence and resilience of conventional alphaproteobacterial MOB, being the genus Methylocystis a centrepiece in environments exposed to dilute and intermittent methane emissions. This knowledge can be applied to the operation of bioreactors subjected to the treatment of dilute and discontinuous emissions via controlled bioaugmentation.


Subject(s)
Bioreactors , Methane , RNA, Ribosomal, 16S/genetics , Oxidation-Reduction , Soil Microbiology
20.
Bioresour Technol ; 387: 129699, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604259

ABSTRACT

In this work, the potential of Methylocystis hirsuta to simultaneously use methane and volatile fatty acids mixtures for triggering PHBV accumulation was assessed for the first time batchwise. Biotic controls carried out with CH4 alone confirmed the inability of Methylocystis hirsuta to produce PHBV and achieved 71.2 ± 7 g m-3d-1 of PHB. Pure valeric acid and two synthetic mixtures simulating VFAs effluents from the anaerobic digestion of food waste at 35 °C (M1) and 55 °C (M2) were supplied to promote 3-HV inclusion. Results showed that pure valeric acid supported the highest polymer yields of 105.8 ± 9 g m-3d-1 (3-HB:3-HV=70:30). M1 mixtures led to a maximum of 103 ± 4 g m-3d-1 of PHBV (3-HB:3-HV=85:15), while M2 mixtures, which did not include valeric acid, showed no PHV synthesis. This suggested that the synthesis of PHBV from VFAs effluents depends on the composition of the mixtures, which can be tuned during the anaerobic digestion process.


Subject(s)
Methane , Refuse Disposal , Food , Fatty Acids, Volatile , Hydroxybutyrates , Polyhydroxybutyrates
SELECTION OF CITATIONS
SEARCH DETAIL
...