Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38610515

ABSTRACT

This paper focuses on the emissions of the three most sold categories of light vehicles: sedans, SUVs, and pickups. The research is carried out through an innovative methodology based on GPS and machine learning in real driving conditions. For this purpose, driving data from the three best-selling vehicles in Ecuador are acquired using a data logger with GPS included, and emissions are measured using a PEMS in six RDE tests with two standardized routes for each vehicle. The data obtained on Route 1 are used to estimate the gears used during driving using the K-means algorithm and classification trees. Then, the relative importance of driving variables is estimated using random forest techniques, followed by the training of ANNs to estimate CO2, CO, NOX, and HC. The data generated on Route 2 are used to validate the obtained ANNs. These models are fed with a dataset generated from 324, 300, and 316 km of random driving for each type of vehicle. The results of the model were compared with the IVE model and an OBD-based model, showing similar results without the need to mount the PEMS on the vehicles for long test drives. The generated model is robust to different traffic conditions as a result of its training and validation using a large amount of data obtained under completely random driving conditions.

2.
Sensors (Basel) ; 21(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34640664

ABSTRACT

This article proposes a methodology for the estimation of emissions in real driving conditions, based on board diagnostics data and machine learning, since it has been detected that there are no models for estimating pollutants without large measurement campaigns. For this purpose, driving data are obtained by means of a data logger and emissions through a portable emissions measurement system in a real driving emissions test. The data obtained are used to train artificial neural networks that estimate emissions, having previously estimated the relative importance of variables through random forest techniques. Then, by the application of the K-means algorithm, labels are obtained to implement a classification tree and thereby determine the selected gear by the driver. These models were loaded with a data set generated covering 1218.19 km of driving. The results generated were compared to the ones obtained by applying the international vehicle emissions model and with the results of the real driving emissions test, showing evidence of similar results. The main contribution of this article is that the generated model is stronger in different traffic conditions and presents good results at the speed interval with small differences at low average driving speeds because more than half of the vehicle's trip occurs in urban areas, in completely random driving conditions. These results can be useful for the estimation of emission factors with potential application in vehicular homologation processes and the estimation of vehicular emission inventories.


Subject(s)
Air Pollutants , Automobile Driving , Environmental Pollutants , Air Pollutants/analysis , Machine Learning , Vehicle Emissions/analysis
3.
Ann Biomed Eng ; 38(2): 280-90, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19826955

ABSTRACT

Although the use of personalized annuloplasty rings manufactured for each patient according to the size and morphology of their valve complex could be beneficial for the treatment of mitral insufficiency, this possibility has been limited for reasons of time-lines and costs as well as for design and manufacturing difficulties, as has been the case with other personalized implant and prosthetic developments. However, the present quality of medical image capture equipment together with the benefits to be had from computer-aided design and manufacturing technologies (CAD-CAM) and the capabilities furnished by rapid prototyping technologies, present new opportunities for a personalized response to the development of implants and prostheses, the social impact of which could turn out to be highly positive. This paper sets out a personalized development of an annuloplasty ring based on the combined use of information from medical imaging, from CAD-CAM design programs and prototype manufacture using rapid prototyping technologies.


Subject(s)
Computer-Aided Design , Heart Valve Prosthesis , Prosthesis Design/methods , Prosthesis Fitting/methods , Software , Therapy, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Equipment Failure Analysis/methods , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...