Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Environ ; 37(3)2022.
Article in English | MEDLINE | ID: mdl-35768277

ABSTRACT

The gut microbiota influences the phenotype and fitness of a host; however, limited information is currently available on the diversity and functions of the gut microbiota in wild animals. Therefore, we herein examined the diversity, composition, and potential functions of the gut microbiota in three Sceloporus lizards: Sceloporus aeneus, S. bicanthalis, and S. grammicus, inhabiting different habitats in a mountainous ecosystem. The gut bacterial community of S. bicanthalis from alpine grasslands at 4,150| |m a.s.l. exhibited greater taxonomic, phylogenetic, and functional alpha diversities than its sister species S. aeneus from cornfields and human-induced grasslands at 2,600| |m| |a.s.l. Bacteria of the genus Blautia and metabolic functions related to the degradation of aromatic compounds were more abundant in S. bicanthalis than in S. aeneus, whereas Oscillibacter and predicted functions related to amino acid metabolism and fermentation were more abundant in S. aeneus. The structure of the dominant and most prevalent bacteria, i.e., the core microbiota, was similar between the sister species from different habitats, but differed between S. grammicus and S. aeneus cohabiting at 2,600| |m| |a.s.l. and between S. grammicus and S. bicanthalis cohabiting at 4,150| |m a.s.l. These results suggest that phylogenetic relatedness defines the core microbiota, while the transient, i.e., non-core, microbiota is influenced by environmental differences in the habitats. Our comparisons between phylogenetically close species provide further evidence for the specialized and complex associations between hosts and the gut microbiota as well as insights into the roles of phylogeny and ecological factors as drivers of the gut microbiota in wild vertebrates.


Subject(s)
Gastrointestinal Microbiome , Lizards , Microbiota , Animals , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Lizards/genetics , Lizards/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics
2.
Front Microbiol ; 12: 667566, 2021.
Article in English | MEDLINE | ID: mdl-34234759

ABSTRACT

Land-use change is one of the most important drivers of change in biodiversity. Deforestation for grazing or agriculture has transformed large areas of temperate forest in the central highlands of Mexico, but its impact on soil fungal communities is still largely unknown. In this study, we determined how deforestation of a high-altitude temperate forest for cultivation of maize (Zea mays L.) or husbandry altered the taxonomic, phylogenetic, functional, and beta diversity of soil fungal communities using a 18S rRNA metabarcoding analysis. The true taxonomic and phylogenetic diversity at order q = 1, i.e., considering frequent operational taxonomic units, decreased significantly in the arable, but not in the pasture soil. The beta diversity decreased in the order forest > pasture > arable soil. The ordination analysis showed a clear effect of intensity of land-use as the forest soil clustered closer to pasture than to the arable soil. The most abundant fungal phyla in the studied soils were Ascomycota, Basidiomycota, and Mucoromycota. Deforestation more than halved the relative abundance of Basidiomycota; mostly Agaricomycetes, such as Lactarius and Inocybe. The relative abundance of Glomeromycota decreased in the order pasture > forest > arable soil. Symbiotrophs, especially ectomycorrhizal fungi, were negatively affected by deforestation while pathotrophs, especially animal pathogens, were enriched in the pasture and arable soil. Ectomycorrhizal fungi were more abundant in the forest soil as they are usually associated with conifers. Arbuscular mycorrhizal fungi were more abundant in the pasture than in the arable soil as the higher plant diversity provided more suitable hosts. Changes in fungal communities resulting from land-use change can provide important information for soil management and the assessment of the environmental impact of deforestation and conversion of vulnerable ecosystems such as high-altitude temperate forests.

3.
PeerJ ; 9: e11144, 2021.
Article in English | MEDLINE | ID: mdl-33828926

ABSTRACT

BACKGROUND: The novel coronavirus disease (COVID-19) pandemic is the second global health emergency the world has faced in less than two decades, after the H1N1 Influenza pandemic in 2009-2010. Spread of pandemics is frequently associated with increased population size and population density. The geographical scales (national, regional or local scale) are key elements in determining the correlation between demographic factors and the spread of outbreaks. The aims of this study were: (a) to collect the Mexican data related to the two pandemics; (b) to create thematic maps using federal and municipal geographic scales; (c) to investigate the correlations between the pandemics indicators (numbers of contagious and deaths) and demographic patterns (population size and density). METHODS: The demographic patterns of all Mexican Federal Entities and all municipalities were taken from the database of "Instituto Nacional de Estadística y Geografía" (INEGI). The data of "Centro Nacional de Programas Preventivos y Control de Enfermedades" (CENAPRECE) and the geoportal of Mexico Government were also used in our analysis. The results are presented by means of tables, graphs and thematic maps. A Spearman correlation was used to assess the associations between the pandemics indicators and the demographic patterns. Correlations with a p value < 0.05 were considered significant. RESULTS: The confirmed cases (ccH1N1) and deaths (dH1N1) registered during the H1N1 Influenza pandemic were 72.4 thousand and 1.2 thousand respectively. Mexico City (CDMX) was the most affected area by the pandemic with 8,502 ccH1N1 and 152 dH1N1. The ccH1N1 and dH1N1 were positively correlated to demographic patterns; p-values higher than the level of marginal significance were found analyzing the % ccH1N1 and the % dH1N1 vs the population density. The COVID-19 pandemic data indicated 75.0 million confirmed cases (ccCOVID-19) and 1.6 million deaths (dCOVID-19) worldwide, as of date. The CDMX, where 264,330 infections were recorded, is the national epicenter of the pandemic. The federal scale did not allow to observe the correlation between demographic data and pandemic indicators; hence the next step was to choose a more detailed geographical scale (municipal basis). The ccCOVID-19 and dCOVID-19 (municipal basis) were highly correlated with demographic patterns; also the % ccCOVID-19 and % dCOVID-19 were moderately correlated with demographic patterns. CONCLUSION: The magnitude of COVID-19 pandemic is much greater than the H1N1 Influenza pandemic. The CDMX was the national epicenter in both pandemics. The federal scale did not allow to evaluate the correlation between exanimated demographic variables and the spread of infections, but the municipal basis allowed the identification of local variations and "red zones" such as the delegation of Iztapalapa and Gustavo A. Madero in CDMX.

4.
Environ Microbiol Rep ; 12(2): 185-194, 2020 04.
Article in English | MEDLINE | ID: mdl-31965701

ABSTRACT

Land-use change has been identified as the most severe threat to biodiversity. Soils are important biodiversity reservoirs, but to what extent conversion of high-altitude temperate forest to arable land affects taxonomic and functional soil biodiversity is still largely unknown. Shotgun metagenomics was used to determine the taxonomic and functional diversity of bacteria, archaea and DNA virus in terms of effective number of species in high-altitude temperate oak and pine-oak forest and arable soils from Mexico. Generally, the soil ecosystem maintained its microbial species richness notwithstanding land-use change. Archaea diversity was not affected by land-use change, but the bacterial diversity decreased with 45-55% when the oak forest was converted to arable land and 65-75% when the pine-oak forest was. Loss in bacterial diversity as a result of land-use change was positively correlated (R2 = 0.41) with the 10-25% loss in functional diversity. The archaeal communities were evener than the bacterial ones, which might explain their different response to land-use change. We expected a decrease in DNA viral communities as the bacterial diversity decreased, i.e. their potential hosts. However, a higher viral diversity was found in the arable than in the forest soils. It was found that converting high altitude oak and pine-oak forests to arable land more than halved the bacterial diversity, but did not affect the archaeal and even increased the viral diversity.


Subject(s)
Altitude , Biodiversity , Forests , Metagenome , Soil Microbiology , Agriculture , Archaea/genetics , Bacteria/genetics , Ecosystem , Genes, Viral , Metagenomics/methods , Mexico , RNA, Ribosomal, 16S/genetics , Viruses/genetics
5.
PeerJ ; 7: e7897, 2019.
Article in English | MEDLINE | ID: mdl-31741782

ABSTRACT

BACKGROUND: Terrestrial ecosystems play a significant role in carbon (C) storage. Human activities, such as urbanization, infrastructure, and land use change, can reduce significantly the C stored in the soil. The aim of this research was to measure the spatial variability of soil organic C (SOC) in the national park La Malinche (NPLM) in the central highlands of Mexico as an example of highland ecosystems and to determine the impact of land use change on the SOC stocks through deterministic and geostatistical geographic information system (GIS) based methods. METHODS: The soil was collected from different landscapes, that is, pine, fir, oak and mixed forests, natural grassland, moor and arable land, and organic C content determined. Different GIS-based deterministic (inverse distance weighting, local polynomial interpolation and radial basis function) and geostatistical interpolation techniques (ordinary kriging, cokriging and empirical Bayes kriging) were used to map the SOC stocks and other environmental variables of the top soil layer. RESULTS: All interpolation GIS-based methods described the spatial distribution of SOC of the NPLM satisfactorily. The total SOC stock of the NPLM was 2.45 Tg C with 85.3% in the forest (1.26 Tg C in the A horizon and 0.83 Tg C in the O horizon), 11.4% in the arable soil (0.23 Tg in the A horizon and only 0.05 Tg C in the O horizon) and 3.3% in the high moor (0.07 Tg C in the A horizon and <0.01 Tg C in the O horizon). The estimated total SOC stock in a preserved part of the forest in NPLM was 4.98 Tg C in 1938 and has nearly halved since then. Continuing this trend of converting all the remaining forest to arable land will decrease the total SOC stock to 0.52 Tg C. DISCUSSION: Different factors explain the large variations in SOC stocks found in this study but the change in land use (conversion of forests into agricultural lands) was the major reason for the reduction of the SOC stocks in the high mountain ecosystem of the NPLM. Large amounts of C, however, could be stored potentially in this ecosystem if the area was used more sustainable. The information derived from this study could be used to recommend strategies to reverse the SOC loss in NPLM and other high-altitude temperate forests and sequester larger quantities of C. This research can serve as a reference for the analysis of SOC distribution in similar mountain ecosystems in central part of Mexico and in other parts of the world.

SELECTION OF CITATIONS
SEARCH DETAIL
...