Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathology ; 37(5): 407-414, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28517732

ABSTRACT

The activities of the central and peripheral immune systems impact neurological outcome after ischemic stroke. However, studies investigating the temporal profile of leukocyte infiltration, especially T-cell recruitment, are sparse. Our aim was to investigate leukocyte infiltration at different time points after experimental stroke in mice. Permanent middle cerebral artery occlusion was performed on 11 weeks old C57BL/6J mice, allowed to survive for 1, 3, 8, 14 or 28 days. In addition to infarct size measurements, detailed immunohistochemical analyses of T-cell and macrophage influx were performed. A recently introduced F-19 MR probe (V-sense), designed to track macrophages, was furthermore tested. Fourteen and 28 days after permanent middle cerebral artery occlusion a significant increase in CD3+ T-cells was found within the ipsilateral hemisphere compared to controls, especially within the infarct core and the corpus callosum. The number of CD68+ cells within the infarct core was significantly increased at days 8, 14 and 28. This temporal pattern was also seen in MRI. After experimental stroke within the infarcted cortex we found a delayed (day 14) infiltration of T-cells and macrophages. Furthermore, our data show that T-cells are present in higher numbers in the corpus callosum compared to the rest of the brain (except from the infarct core where they were highest).


Subject(s)
Macrophages/immunology , Stroke/immunology , T-Lymphocytes/immunology , Animals , Brain/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Stroke/pathology
2.
Sci Rep ; 6: 28643, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27345490

ABSTRACT

Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIE(XVIII)) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIE(XVIII) trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIE(XVIII) modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas.


Subject(s)
Antibodies, Bispecific , Protein Engineering , Recombinant Fusion Proteins , Single-Chain Antibodies , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Camelids, New World , Humans , Mice , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...