Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Genome Med ; 13(1): 123, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34340684

ABSTRACT

BACKGROUND: Obesity predisposes individuals to multiple cardiometabolic disorders, including type 2 diabetes (T2D). As body mass index (BMI) cannot reliably differentiate fat from lean mass, the metabolically detrimental abdominal obesity has been estimated using waist-hip ratio (WHR). Waist-hip ratio adjusted for body mass index (WHRadjBMI) in turn is a well-established sex-specific marker for abdominal fat and adiposity, and a predictor of adverse metabolic outcomes, such as T2D. However, the underlying genes and regulatory mechanisms orchestrating the sex differences in obesity and body fat distribution in humans are not well understood. METHODS: We searched for genetic master regulators of WHRadjBMI by employing integrative genomics approaches on human subcutaneous adipose RNA sequencing (RNA-seq) data (n ~ 1400) and WHRadjBMI GWAS data (n ~ 700,000) from the WHRadjBMI GWAS cohorts and the UK Biobank (UKB), using co-expression network, transcriptome-wide association study (TWAS), and polygenic risk score (PRS) approaches. Finally, we functionally verified our genomic results using gene knockdown experiments in a human primary cell type that is critical for adipose tissue function. RESULTS: Here, we identified an adipose gene co-expression network that contains 35 obesity GWAS genes and explains a significant amount of polygenic risk for abdominal obesity and T2D in the UKB (n = 392,551) in a sex-dependent way. We showed that this network is preserved in the adipose tissue data from the Finnish Kuopio Obesity Study and Mexican Obesity Study. The network is controlled by a novel adipose master transcription factor (TF), TBX15, a WHRadjBMI GWAS gene that regulates the network in trans. Knockdown of TBX15 in human primary preadipocytes resulted in changes in expression of 130 network genes, including the key adipose TFs, PPARG and KLF15, which were significantly impacted (FDR < 0.05), thus functionally verifying the trans regulatory effect of TBX15 on the WHRadjBMI co-expression network. CONCLUSIONS: Our study discovers a novel key function for the TBX15 TF in trans regulating an adipose co-expression network of 347 adipose, mitochondrial, and metabolically important genes, including PPARG, KLF15, PPARA, ADIPOQ, and 35 obesity GWAS genes. Thus, based on our converging genomic, transcriptional, and functional evidence, we interpret the role of TBX15 to be a main transcriptional regulator in the adipose tissue and discover its importance in human abdominal obesity.


Subject(s)
Adipose Tissue/metabolism , Gene Expression Regulation , Obesity, Abdominal/genetics , Obesity, Abdominal/metabolism , T-Box Domain Proteins/metabolism , Trans-Activators/metabolism , Adipocytes , Adiposity/genetics , Aged , Algorithms , Biomarkers , Body Mass Index , Cells, Cultured , Computational Biology/methods , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Disease Susceptibility , Gene Expression Profiling , Gene Knockdown Techniques , Gene Regulatory Networks , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Lod Score , Male , Middle Aged , Waist-Hip Ratio
3.
PLoS Genet ; 16(9): e1009018, 2020 09.
Article in English | MEDLINE | ID: mdl-32925908

ABSTRACT

Reverse causality has made it difficult to establish the causal directions between obesity and prediabetes and obesity and insulin resistance. To disentangle whether obesity causally drives prediabetes and insulin resistance already in non-diabetic individuals, we utilized the UK Biobank and METSIM cohort to perform a Mendelian randomization (MR) analyses in the non-diabetic individuals. Our results suggest that both prediabetes and systemic insulin resistance are caused by obesity (p = 1.2×10-3 and p = 3.1×10-24). As obesity reflects the amount of body fat, we next studied how adipose tissue affects insulin resistance. We performed both bulk RNA-sequencing and single nucleus RNA sequencing on frozen human subcutaneous adipose biopsies to assess adipose cell-type heterogeneity and mitochondrial (MT) gene expression in insulin resistance. We discovered that the adipose MT gene expression and body fat percent are both independently associated with insulin resistance (p≤0.05 for each) when adjusting for the decomposed adipose cell-type proportions. Next, we showed that these 3 factors, adipose MT gene expression, body fat percent, and adipose cell types, explain a substantial amount (44.39%) of variance in insulin resistance and can be used to predict it (p≤2.64×10-5 in 3 independent human cohorts). In summary, we demonstrated that obesity is a strong determinant of both prediabetes and insulin resistance, and discovered that individuals' adipose cell-type composition, adipose MT gene expression, and body fat percent predict their insulin resistance, emphasizing the critical role of adipose tissue in systemic insulin resistance.


Subject(s)
Adipose Tissue/metabolism , Insulin Resistance/physiology , Obesity/genetics , Adipocytes/metabolism , Adiposity , Adult , Body Mass Index , Cohort Studies , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin Resistance/genetics , Male , Middle Aged , Obesity/physiopathology , Prediabetic State/metabolism , Prediabetic State/physiopathology , Subcutaneous Fat/metabolism
4.
Carcinogenesis ; 37(6): 547-556, 2016 06.
Article in English | MEDLINE | ID: mdl-27207650

ABSTRACT

Genome-wide association studies (GWAS) have identified 58 susceptibility alleles across 37 regions associated with the risk of colorectal cancer (CRC) with P < 5×10(-8) Most studies have been conducted in non-Hispanic whites and East Asians; however, the generalizability of these findings and the potential for ethnic-specific risk variation in Hispanic and Latino (HL) individuals have been largely understudied. We describe the first GWAS of common genetic variation contributing to CRC risk in HL (1611 CRC cases and 4330 controls). We also examine known susceptibility alleles and implement imputation-based fine-mapping to identify potential ethnicity-specific association signals in known risk regions. We discovered 17 variants across 4 independent regions that merit further investigation due to suggestive CRC associations (P < 1×10(-6)) at 1p34.3 (rs7528276; Odds Ratio (OR) = 1.86 [95% confidence interval (CI): 1.47-2.36); P = 2.5×10(-7)], 2q23.3 (rs1367374; OR = 1.37 (95% CI: 1.21-1.55); P = 4.0×10(-7)), 14q24.2 (rs143046984; OR = 1.65 (95% CI: 1.36-2.01); P = 4.1×10(-7)) and 16q12.2 [rs142319636; OR = 1.69 (95% CI: 1.37-2.08); P=7.8×10(-7)]. Among the 57 previously published CRC susceptibility alleles with minor allele frequency ≥1%, 76.5% of SNPs had a consistent direction of effect and 19 (33.3%) were nominally statistically significant (P < 0.05). Further, rs185423955 and rs60892987 were identified as novel secondary susceptibility variants at 3q26.2 (P = 5.3×10(-5)) and 11q12.2 (P = 6.8×10(-5)), respectively. Our findings demonstrate the importance of fine mapping in HL. These results are informative for variant prioritization in functional studies and future risk prediction modeling in minority populations.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Aged , Alleles , Cohort Studies , Female , Genetic Variation , Genetics, Population , Genome-Wide Association Study , Humans , Male , Middle Aged
5.
J Med Genet ; 50(5): 298-308, 2013 May.
Article in English | MEDLINE | ID: mdl-23505323

ABSTRACT

BACKGROUND: The Mexican population and others with Amerindian heritage exhibit a substantial predisposition to dyslipidemias and coronary heart disease. Yet, these populations remain underinvestigated by genomic studies, and to date, no genome-wide association (GWA) studies have been reported for lipids in these rapidly expanding populations. METHODS AND FINDINGS: We performed a two-stage GWA study for hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) in Mexicans (n=4361), and identified a novel Mexican-specific genome-wide significant locus for serum triglycerides (TGs) near the Niemann-Pick type C1 protein gene (p=2.43×10(-08)). Furthermore, three European loci for TGs (APOA5, GCKR and LPL), and four loci for HDL-C (ABCA1, CETP, LIPC and LOC55908) reached genome-wide significance in Mexicans. We used cross-ethnic mapping to narrow three European TG GWA loci, APOA5, MLXIPL, and CILP2 that were wide and contained multiple candidate variants in the European scan. At the APOA5 locus, this reduced the most likely susceptibility variants to one, rs964184. Importantly, our functional analysis demonstrated a direct link between rs964184 and postprandial serum apoAV protein levels, supporting rs964184 as the causative variant underlying the European and Mexican GWA signal. Overall, 52 of the 100 reported associations from European lipid GWA meta-analysis generalised to Mexicans. However, in 82 of the 100 European GWA loci, a different variant other than the European lead/best-proxy variant had the strongest regional evidence of association in Mexicans. CONCLUSIONS: This first Mexican GWA study of lipids identified a novel GWA locus for high TG levels; used the interpopulation heterogeneity to significantly restrict three previously known European GWA signals, and surveyed whether the European lipid GWA SNPs extend to the Mexican population.


Subject(s)
Apolipoproteins A/genetics , Genetic Loci/genetics , Hypertriglyceridemia/genetics , Hypoalphalipoproteinemias/genetics , Indians, North American/genetics , Triglycerides/genetics , Apolipoprotein A-V , Apolipoproteins A/blood , Genome-Wide Association Study , Genotype , Humans , Hypertriglyceridemia/ethnology , Hypoalphalipoproteinemias/ethnology , Linkage Disequilibrium , Membrane Proteins/genetics , Membrane Transport Proteins , Mexico , Polymorphism, Single Nucleotide/genetics , Triglycerides/blood , White People/genetics
6.
Metabolism ; 62(5): 638-41, 2013 May.
Article in English | MEDLINE | ID: mdl-23273975

ABSTRACT

OBJECTIVE: To test the hypothesis that persons with the R230C allele of ABCA1 show a decreased glycemic response to glyburide. This polymorphism is exclusively found in Ameri-indian populations and is associated with type 2 diabetes. RESEARCH DESIGN AND METHODS: This is a single blind controlled study including participants with type 2 diabetes (fasting glucose levels 126-250 mg/dl and HbA1c 7%-10%) managed with metformin and a lifestyle program. Each person with the risk allele (R230C) was matched by age, gender and BMI to three others with the wild type variant (R230R). Following a four week stabilization period, only participants with a greater than 70% adherence to metformin and a stable body weight were prescribed glyburide therapy for a further 16 weeks. The main outcome variable was the glyburide dose required to achieve treatment goals. RESULTS: No significant difference was observed in the glucose lowering effect of glyburide between subjects with the R230C and R230R alleles. However, the dose of sulfonylurea was significantly higher in the R230C participants compared with the R230R subjects (3.3±2.1 vs 6.3±5 mg/day, p<0.001). A higher percentage of R230C participants required at least 5mg of glyburide per day to achieve treatment goals. The glyburide dose was determined by the presence of the risk allele, among other factors. CONCLUSIONS: Patients with type 2 diabetes who have the R230C allele of ABCA1 needed a higher dose of glyburide in order to achieve the same glucose lowering effect as that in persons with the wild type variant.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Drug Resistance/genetics , Glyburide/therapeutic use , ATP Binding Cassette Transporter 1 , Adult , Aged , Amino Acid Substitution , Arginine/genetics , Cysteine/genetics , Dose-Response Relationship, Drug , Drug Resistance/drug effects , Female , Genetic Association Studies , Genetic Predisposition to Disease , Glyburide/administration & dosage , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Mutation, Missense/physiology , Polymorphism, Single Nucleotide/physiology , Single-Blind Method , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...