Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oral Dis ; 29(1): 21-28, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34698406

ABSTRACT

Periodontitis is a chronic non-communicable disease caused by a dysbiotic microbiota. Pathogens can spread to the bloodstream, colonize other tissues or organs, and favor the onset of other pathologies, such as Alzheimer's disease (AD). Pathogens could permanently or transiently colonize the brain and induce an immune response. Thus, we analyzed the evidence combining oral bacteria's detection in the brain, both in animals and humans affected with AD. This systematic review was carried out following the PRISMA guideline. Studies that detected oral bacteria at the brain level were selected. The search was carried out in the Medline, Latindex, SciELO, and Cochrane Library databases. SYRCLE tool and Newcastle-Ottawa Scale were used for the risk of bias assessment. 23 studies were selected according to the eligibility criteria. Infection with oral pathogens in animals was related to developing neuropathological characteristics of AD and bacteria detection in the brain. In patients with AD, oral bacteria were detected in brain tissues, and increased levels of pro-inflammatory cytokines were also detected. There is evidence of a microbiological susceptibility to develop AD when the most dysbiosis-associated oral bacteria are present. The presence of bacteria in the brain is related to AD's pathological characteristics, suggesting an etiological oral-brain axis.


Subject(s)
Alzheimer Disease , Microbiota , Periodontitis , Animals , Humans , Periodontitis/microbiology , Bacteria , Brain , Dysbiosis/complications
2.
Front Immunol ; 11: 588036, 2020.
Article in English | MEDLINE | ID: mdl-33240277

ABSTRACT

Periodontal disease is a disease of tooth-supporting tissues. It is a chronic disease with inflammatory nature and infectious etiology produced by a dysbiotic subgingival microbiota that colonizes the gingivodental sulcus. Among several periodontal bacteria, Porphyromonas gingivalis (P. gingivalis) highlights as a keystone pathogen. Previous reports have implied that chronic inflammatory response and measurable bone resorption are observed in young mice, even after a short period of periodontal infection with P. gingivalis, which has been considered as a suitable model of experimental periodontitis. Also, encapsulated P. gingivalis strains are more virulent than capsular-defective mutants, causing an increased immune response, augmented osteoclastic activity, and accrued alveolar bone resorption in these rodent experimental models of periodontitis. Recently, P. gingivalis has been associated with Alzheimer's disease (AD) pathogenesis, either by worsening brain pathology in AD-transgenic mice or by inducing memory impairment and age-dependent neuroinflammation middle-aged wild type animals. We hypothesized here that the more virulent encapsulated P. gingivalis strains could trigger the appearance of brain AD-markers, neuroinflammation, and cognitive decline even in young rats subjected to a short periodontal infection exposure, due to their higher capacity of activating brain inflammatory responses. To test this hypothesis, we periodontally inoculated 4-week-old male Sprague-Dawley rats with K1, K2, or K4 P. gingivalis serotypes and the K1-isogenic non-encapsulated mutant (GPA), used as a control. 45-days after periodontal inoculations with P. gingivalis serotypes, rat´s spatial memory was evaluated for six consecutive days in the Oasis maze task. Following functional testing, the animals were sacrificed, and various tissues were removed to analyze alveolar bone resorption, cytokine production, and detect AD-specific biomarkers. Strikingly, only K1 or K2 P. gingivalis-infected rats displayed memory deficits, increased alveolar bone resorption, pro-inflammatory cytokine production, changes in astrocytic morphology, increased Aß1-42 levels, and Tau hyperphosphorylation in the hippocampus. None of these effects were observed in rats infected with the non-encapsulated bacterial strains. Based on these results, we propose that the bacterial virulence factors constituted by capsular polysaccharides play a central role in activating innate immunity and inflammation in the AD-like pathology triggered by P. gingivalis in young rats subjected to an acute experimental infection episode.


Subject(s)
Alzheimer Disease , Bacteroidaceae Infections , Periodontitis , Porphyromonas gingivalis , Animals , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology , Bone Resorption , Cytokines/immunology , Hippocampus/immunology , Hippocampus/metabolism , Hippocampus/microbiology , Learning , Lipid Peroxidation , Male , Periodontitis/immunology , Periodontitis/metabolism , Periodontitis/microbiology , Rats, Sprague-Dawley , Serogroup , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...