Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 12(5)2023 05 15.
Article in English | MEDLINE | ID: mdl-37199309

ABSTRACT

Cell recruitment is a process by which a differentiated cell induces neighboring cells to adopt its same cell fate. In Drosophila, cells expressing the protein encoded by the wing selector gene, vestigial (vg), drive a feed-forward recruitment signal that expands the Vg pattern as a wave front. However, previous studies on Vg pattern formation do not reveal these dynamics. Here, we use live imaging to show that multiple cells at the periphery of the wing disc simultaneously activate a fluorescent reporter of the recruitment signal, suggesting that cells may be recruited without the need for their contact neighbors be recruited in advance. In support of this observation, when Vg expression is inhibited either at the dorsal-ventral boundary or away from it, the activation of the recruitment signal still occurs at a distance, suggesting that Vg expression is not absolutely required to send or propagate the recruitment signal. However, the strength and extent of the recruitment signal is clearly compromised. We conclude that a feed-forward, contact-dependent cell recruitment process is not essential for Vg patterning, but it is necessary for robustness. Overall, our findings reveal a previously unidentified role of cell recruitment as a robustness-conferring cell differentiation mechanism.


Subject(s)
Drosophila Proteins , Drosophila , Nuclear Proteins , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
2.
Proc Biol Sci ; 289(1984): 20221167, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36476003

ABSTRACT

Organ growth driven by cell proliferation is an exponential process. As a result, even small variations in proliferation rates, when integrated over a relatively long developmental time, will lead to large differences in size. How organs robustly control their final size despite perturbations in cell proliferation rates throughout development is a long-standing question in biology. Using a mathematical model, we show that in the developing wing of the fruit fly, Drosophila melanogaster, variations in proliferation rates of wing-committed cells are inversely proportional to the duration of cell recruitment, a differentiation process in which a population of undifferentiated cells adopt the wing fate by expressing the selector gene, vestigial. A time-course experiment shows that vestigial-expressing cells increase exponentially while recruitment takes place, but slows down when recruitable cells start to vanish, suggesting that undifferentiated cells may be driving proliferation of wing-committed cells. When this observation is incorporated in our model, we show that the duration of cell recruitment robustly determines a final wing size even when cell proliferation rates of wing-committed cells are perturbed. Finally, we show that this control mechanism fails when perturbations in proliferation rates affect both wing-committed and recruitable cells, providing an experimentally testable hypothesis of our model.


Subject(s)
Drosophila melanogaster , Drosophila , Animals
3.
Dev Biol ; 462(2): 141-151, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32197891

ABSTRACT

Organs mainly attain their size by cell growth and proliferation, but sometimes also grow through recruitment of undifferentiated cells. Here we investigate the participation of cell recruitment in establishing the pattern of Vestigial (Vg), the product of the wing selector gene in Drosophila. We find that the Vg pattern overscales along the dorsal-ventral (DV) axis of the wing imaginal disc, i.e., it expands faster than the DV length of the pouch. The overscaling of the Vg pattern cannot be explained by differential proliferation, apoptosis, or oriented-cell divisions, but can be recapitulated by a mathematical model that explicitly considers cell recruitment. When impairing cell recruitment genetically, we find that the Vg pattern almost perfectly scales and adult wings are approximately 20% smaller. Conversely, impairing cell proliferation results in very small wings, suggesting that cell recruitment and cell proliferation additively contribute to organ growth in this system. Furthermore, using fluorescent reporter tools, we provide direct evidence that cell recruitment is initiated between early and mid third-instar larval development. Altogether, our work quantitatively shows when, how, and by how much cell recruitment shapes the Vg pattern and drives growth of the Drosophila wing.


Subject(s)
Body Patterning/genetics , Drosophila Proteins/genetics , Nuclear Proteins/genetics , Wings, Animal/growth & development , Animals , Cell Division , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental/genetics , Imaginal Discs/growth & development , Nuclear Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Wnt1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...