Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 16(12): 2387-2400, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37837250

ABSTRACT

The aim of this work was to evaluate the effect of different inorganic compounds as electron donors for the capture of CO2 from a model cement flue gas CO2 /O2 /N2 (4.2:13.5:82.3% v/v) using a non-photosynthetic microbial community. The inoculum obtained from a H2 -producing reactor was acclimated to CO2 consumption achieving 100% of CO2 removal after 45 days. Na2 S, MnCl2 , NaNO2 , NH4 Cl, Na2 S2 O3 , and FeCl2 were used as energy source for CO2 fixation by the acclimated microbial community showing different efficiencies, being Na2 S the best electron donor evaluated (100% of CO2 consumption) and FeCl2 the less effective (28% of CO2 consumption). In all treatments, acetate and propionate were the main endpoint metabolites. Moreover, scaling the process to a continuous laboratory biotrickling filter using Na2 S as energy source showed a CO2 consumption of up to 77%. Analysis of the microbial community showed that Na2 S and FeCl2 exerted a strong selection on the microbial members in the community showing significant differences (PERMANOVA, p = 0.0001) compared to the control and the other treatments. Results suggest that the CO2 fixing pathways used by the microbial community in all treatments were the 3-hydroxypropionate-4-hydroxybutyrate cycle and the Wood-Ljungdahl pathway.


Subject(s)
Carbon Dioxide , Microbiota , Carbon Dioxide/metabolism , Electrons
2.
Water Sci Technol ; 84(3): 656-666, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34388125

ABSTRACT

This study compares the H2 production from glucose, xylose, and acidic hydrolysates of Agave tequilana bagasse as substrates. The fermentation was performed in a granular sludge reactor operated in two phases: (1) model substrates (glucose and xylose) and (2) acidic hydrolysates at 35 °C, pH 4.5 and a hydraulic retention time of 5.5 h with glucose (10 g L-1) and xylose (12 g L-1). A sequencing batch reactor was used to acclimate the biomass between the glucose and xylose continuous fermentation (with a mixture of xylose-glucose) and acidic hydrolysates. During the discontinuous acclimating step, the xylose/glucose ratio increment negatively affected the H2 productivity. Although the continuous H2 production with xylose was negligible, the co-fermentation with glucose (88-12%) allowed H2 productivity of 2,889 ± 502 mL H2 L-1d-1. An acidic hydrolysate concentration of 3.3 gcarbohydrate L-1 showed a three-fold higher H2 productivity than with a concentration of 10 g L-1. The results indicated that xylose, as the only substrate, was challenging to metabolize by the inoculum, and its mixture with glucose improved the H2 productivity. Therefore, the low H2 productivity with hydrolysates could be related to the presence of xylose.


Subject(s)
Agave , Xylose , Agave/metabolism , Cellulose/metabolism , Fermentation , Glucose
3.
Braz J Microbiol ; 51(2): 701-709, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32319044

ABSTRACT

This study proposes the treatment and valorization of denim textile effluents through a fermentative hydrogen production process. Also, the study presents the decolorizing capabilities of bacterial and fungal isolates obtained from the fermented textile effluents. The maximum hydrogen production rate was 0.23 L H2/L-d, achieving at the same time color removal. A total of thirty-five bacteria and one fungal isolate were obtained from the fermented effluents and screened for their abilities to decolorize indigo dye, used as a model molecule. From them, isolates identified as Bacillus BT5, Bacillus BT9, Lactobacillus BT20, Lysinibacillus BT32, and Aspergillus H1T showed notable decolorizing capacities. Lactobacillus BT20 reached 90% of decolorization using glucose as co-substrate after 11 days of incubation producing colorless metabolites. Bacillus BT9 was able to utilize the indigo dye as the sole carbon source achieving a maximum decolorization of 60% after 9 days of incubation and producing a red-colored metabolite. In contrast, Bacillus BT5 and Lysinibacillus BT32 exhibited the lowest percentages of decolorization, barely 33% after 16 and 11 days of incubation, respectively. When Aspergillus H1T was grown in indigo dye supplemented with glucose, 96% of decolorization was reached after 2 days. This study demonstrates the valorization of denim textile effluents for the production of hydrogen via dark fermentation with concomitant color removal.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Hydrogen/metabolism , Indigo Carmine/metabolism , Water Decolorization , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Coloring Agents/metabolism , Kinetics , Textiles/analysis , Wastewater/microbiology
4.
Folia Microbiol (Praha) ; 63(4): 467-478, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29423709

ABSTRACT

Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, ß-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, ß-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N = 14) were analyzed by Pearson's correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and ß-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. niger-T. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.


Subject(s)
Ascomycota/growth & development , Ascomycota/metabolism , Bioreactors/microbiology , Cellulases/biosynthesis , Coculture Techniques , Industrial Microbiology/methods , Ascomycota/enzymology , Ascomycota/isolation & purification , Aspergillus niger/enzymology , Aspergillus niger/growth & development , Aspergillus niger/isolation & purification , Aspergillus niger/metabolism , Biomass , Cellulases/metabolism , Cellulose/metabolism , Fermentation , Fungal Proteins/biosynthesis , Fungal Proteins/metabolism , Fusarium/enzymology , Fusarium/growth & development , Fusarium/isolation & purification , Fusarium/metabolism , Microbial Interactions/physiology , Trichoderma/enzymology , Trichoderma/growth & development , Trichoderma/isolation & purification , Trichoderma/metabolism , Xylosidases/biosynthesis , Xylosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...