Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(2): 112019, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36701230

ABSTRACT

Gene editing through repair of CRISPR-Cas9-induced chromosomal breaks offers a means to correct a wide range of genetic defects. Directing repair to produce desirable outcomes by modulating DNA repair pathways holds considerable promise to increase the efficiency of genome engineering. Here, we show that inhibition of non-homologous end joining (NHEJ) or polymerase theta-mediated end joining (TMEJ) can be exploited to alter the mutational outcomes of CRISPR-Cas9. We show robust inhibition of TMEJ activity at CRISPR-Cas9-induced double-strand breaks (DSBs) using ART558, a potent polymerase theta (PolÏ´) inhibitor. Using targeted sequencing, we show that ART558 suppresses the formation of microhomology-driven deletions in favor of NHEJ-specific outcomes. Conversely, NHEJ deficiency triggers the formation of large kb-sized deletions, which we show are the products of mutagenic TMEJ. Finally, we show that combined chemical inhibition of TMEJ and NHEJ increases the efficiency of homology-driven repair (HDR)-mediated precise gene editing. Our work reports a robust strategy to improve the fidelity and safety of genome engineering.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded , Mutation/genetics , DNA End-Joining Repair
2.
NPJ Breast Cancer ; 7(1): 117, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34504103

ABSTRACT

The tumor suppressor FANCD1/BRCA2 is crucial for DNA homologous recombination repair (HRR). BRCA2 biallelic pathogenic variants result in a severe form of Fanconi anemia (FA) syndrome, whereas monoallelic pathogenic variants cause mainly hereditary breast and ovarian cancer predisposition. For decades, the co-occurrence in trans with a clearly pathogenic variant led to assume that the other allele was benign. However, here we show a patient with biallelic BRCA2 (c.1813dup and c.7796 A > G) diagnosed at age 33 with FA after a hypertoxic reaction to chemotherapy during breast cancer treatment. After DNA damage, patient cells displayed intermediate chromosome fragility, reduced survival, cell cycle defects, and significantly decreased RAD51 foci formation. With a newly developed cell-based flow cytometric assay, we measured single BRCA2 allele contributions to HRR, and found that expression of the missense allele in a BRCA2 KO cellular background partially recovered HRR activity. Our data suggest that a hypomorphic BRCA2 allele retaining 37-54% of normal HRR function can prevent FA clinical phenotype, but not the early onset of breast cancer and severe hypersensitivity to chemotherapy.

3.
Nat Commun ; 12(1): 4843, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376693

ABSTRACT

Small tandem duplications of DNA occur frequently in the human genome and are implicated in the aetiology of certain human cancers. Recent studies have suggested that DNA double-strand breaks are causal to this mutational class, but the underlying mechanism remains elusive. Here, we identify a crucial role for DNA polymerase α (Pol α)-primase in tandem duplication formation at breaks having complementary 3' ssDNA protrusions. By including so-called primase deserts in CRISPR/Cas9-induced DNA break configurations, we reveal that fill-in synthesis preferentially starts at the 3' tip, and find this activity to be dependent on 53BP1, and the CTC1-STN1-TEN1 (CST) and Shieldin complexes. This axis generates near-blunt ends specifically at DNA breaks with 3' overhangs, which are subsequently repaired by non-homologous end-joining. Our study provides a mechanistic explanation for a mutational signature abundantly observed in the genomes of species and cancer cells.


Subject(s)
DNA Breaks, Double-Stranded , DNA Polymerase I/metabolism , DNA Primase/metabolism , Microsatellite Repeats/genetics , Telomere-Binding Proteins/metabolism , Animals , Base Sequence , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cells, Cultured , DNA End-Joining Repair , DNA Polymerase I/genetics , DNA Primase/genetics , DNA, Single-Stranded , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
J Med Genet ; 57(4): 258-268, 2020 04.
Article in English | MEDLINE | ID: mdl-31586946

ABSTRACT

PURPOSE: Patients with Fanconi anaemia (FA), a rare DNA repair genetic disease, exhibit chromosome fragility, bone marrow failure, malformations and cancer susceptibility. FA molecular diagnosis is challenging since FA is caused by point mutations and large deletions in 22 genes following three heritability patterns. To optimise FA patients' characterisation, we developed a simplified but effective methodology based on whole exome sequencing (WES) and functional studies. METHODS: 68 patients with FA were analysed by commercial WES services. Copy number variations were evaluated by sequencing data analysis with RStudio. To test FANCA missense variants, wt FANCA cDNA was cloned and variants were introduced by site-directed mutagenesis. Vectors were then tested for their ability to complement DNA repair defects of a FANCA-KO human cell line generated by TALEN technologies. RESULTS: We identified 93.3% of mutated alleles including large deletions. We determined the pathogenicity of three FANCA missense variants and demonstrated that two FANCA variants reported in mutations databases as 'affecting functions' are SNPs. Deep analysis of sequencing data revealed patients' true mutations, highlighting the importance of functional analysis. In one patient, no pathogenic variant could be identified in any of the 22 known FA genes, and in seven patients, only one deleterious variant could be identified (three patients each with FANCA and FANCD2 and one patient with FANCE mutations) CONCLUSION: WES and proper bioinformatics analysis are sufficient to effectively characterise patients with FA regardless of the rarity of their complementation group, type of mutations, mosaic condition and DNA source.


Subject(s)
Exome Sequencing , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/genetics , Genetic Predisposition to Disease , Cell Line , DNA Copy Number Variations/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia/pathology , Female , Gene Knockout Techniques , Humans , Male , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...