Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Insect Mol Biol ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613398

ABSTRACT

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

2.
Metabolism ; 155: 155916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615945

ABSTRACT

Exercise is an effective non-pharmacological strategy for the treatment of nonalcoholic steatohepatitis (NASH), but the underlying mechanism needs further investigation. Kruppel-like factor 10 (Klf10) is a transcriptional factor that is expressed in multiple tissues including liver, whose role in NASH is not well defined. In our study, exercise induces hepatic Klf10 expression through the cAMP/PKA/CREB pathway. Hepatocyte-specific knockout of Klf10 (Klf10LKO) increases lipid accumulation, cell death, inflammation and fibrosis in NASH diet-fed mice and reduces the protective effects of treadmill exercise against NASH, while hepatocyte-specific overexpression of Klf10 (Klf10LTG) works in concert with exercise to reduce NASH in mice. Mechanistically, Klf10 promotes the expression of fumarate hydratase 1 (Fh1), thereby reducing fumarate accumulation in hepatocytes. This decreases the trimethyl (me3) levels of histone 3 lysine 4 (H3K4me3) on lipogenic genes promoters to attenuate lipogenesis, thus ameliorating free fatty acids (FFAs)-induced hepatocytes steatosis, apoptosis, insulin resistance and blunting dysfunctional hepatocytes-mediated activation of macrophages and hepatic stellate cells. Therefore, by regulating the Fh1/fumarate/H3K4me3 pathway, Klf10 acts as a downstream effector of exercise to combat NASH.


Subject(s)
Early Growth Response Transcription Factors , Fumarate Hydratase , Kruppel-Like Transcription Factors , Liver , Non-alcoholic Fatty Liver Disease , Physical Conditioning, Animal , Animals , Male , Mice , Early Growth Response Transcription Factors/metabolism , Early Growth Response Transcription Factors/genetics , Hepatocytes/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lipogenesis/genetics , Lipogenesis/physiology , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/genetics , Physical Conditioning, Animal/physiology , Fumarate Hydratase/metabolism
3.
Pest Manag Sci ; 80(8): 3752-3762, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38488318

ABSTRACT

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.


Subject(s)
Apoptosis , Bombyx , Larva , Nucleopolyhedroviruses , Voltage-Dependent Anion Channels , Animals , Bombyx/virology , Bombyx/genetics , Nucleopolyhedroviruses/physiology , Larva/virology , Larva/growth & development , Larva/metabolism , Voltage-Dependent Anion Channels/metabolism , Voltage-Dependent Anion Channels/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , RNA Interference
4.
J Org Chem ; 89(7): 4336-4348, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38465834

ABSTRACT

The chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine is the key core skeleton of potent Bruton's tyrosine kinase (BTK) inhibitor Zanubrutinib, and the catalyst-controlled asymmetric hydrogenation of planar multinuclear pyrimidine heteroarenes with multiple N atoms could provide an efficient route toward its synthesis. Owing to the strong aromaticity and poisoning effect toward chiral transition metal catalyst, asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines with multiple nitrogen atoms is still a challenge for synthesizing the chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]-pyrimidine. Herein, an efficient iridium-catalyzed asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines has been developed using substrate activation strategy, with up to 99% ee. The decagram scale synthesis further demonstrated the potential and promise of this procedure in the synthesis of Zanubrutinib. In addition, a mechanistic study indicated that the hydrogenation starts with 1,2-hydrogenation.

5.
Org Lett ; 26(13): 2535-2539, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38526435

ABSTRACT

Using readily available manganese pentacarbonyl bromide as a regeneration catalyst, biomimetic asymmetric reduction of imines including quinoxalinones, benzoxazinones, and benzoxazine has been successfully developed in the presence of transfer catalyst chiral phosphoric acids, providing the chiral amines with high yields and enantioselectivities.

6.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38323672

ABSTRACT

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Subject(s)
Bombyx , Insect Proteins , Nucleopolyhedroviruses , Animals , Bombyx/enzymology , Bombyx/genetics , Bombyx/virology , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/growth & development , Larva/virology , Metalloproteins/metabolism , Metalloproteins/genetics , Molybdenum Cofactors , Nucleopolyhedroviruses/physiology , RNA Interference , Uric Acid/metabolism
7.
Nat Commun ; 14(1): 8391, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110408

ABSTRACT

Exercise is an effective non-pharmacological strategy for ameliorating nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism needs further investigation. Cysteine dioxygenase type 1 (Cdo1) is a key enzyme for cysteine catabolism that is enriched in liver, whose role in NAFLD remains poorly understood. Here, we show that exercise induces the expression of hepatic Cdo1 via the cAMP/PKA/CREB signaling pathway. Hepatocyte-specific knockout of Cdo1 (Cdo1LKO) decreases basal metabolic rate of the mice and impairs the effect of exercise against NAFLD, whereas hepatocyte-specific overexpression of Cdo1 (Cdo1LTG) increases basal metabolic rate of the mice and synergizes with exercise to ameliorate NAFLD. Mechanistically, Cdo1 tethers Camkk2 to AMPK by interacting with both of them, thereby activating AMPK signaling. This promotes fatty acid oxidation and mitochondrial biogenesis in hepatocytes to attenuate hepatosteatosis. Therefore, by promoting hepatic Camkk2-AMPK signaling pathway, Cdo1 acts as an important downstream effector of exercise to combat against NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Liver/metabolism , Hepatocytes/metabolism , Lipid Metabolism , Mice, Inbred C57BL , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism
8.
Arch Insect Biochem Physiol ; 114(4): e22054, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700521

ABSTRACT

Signaling pathways regulate the transmission of signals during organism growth and development, promoting the smooth and accurate completion of numerous physiological and biochemical reactions. The extracellular signal-regulated kinase (ERK) signaling pathway is an essential pathway involved in regulating various physiological processes, such as cell proliferation, differentiation, adhesion, migration, and more. This pathway also contributes to several important physiological processes in silkworms, including protein synthesis, reproduction, and immune defense against pathogens. Organizing related studies on the ERK signaling pathway in silkworms can provide a better understanding of its mechanism in Lepidopterans and develop a theoretical foundation for improving cocoon production and new strategies for pest biological control.


Subject(s)
Bombyx , Extracellular Signal-Regulated MAP Kinases , Lepidoptera , Animals , Bombyx/genetics , Extracellular Signal-Regulated MAP Kinases/physiology , Signal Transduction
9.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532315

ABSTRACT

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Subject(s)
Bombyx , Lepidoptera , Pesticides , Pyrethrins , Animals , Bombyx/genetics , Bombyx/metabolism , Transcriptome , Lepidoptera/genetics , Fat Body , Gene Expression Profiling , Pyrethrins/toxicity , Pyrethrins/metabolism , Pesticides/metabolism
10.
Genes Dis ; 10(3): 877-890, 2023 May.
Article in English | MEDLINE | ID: mdl-37396540

ABSTRACT

Cysteine dioxygenase type 1 (CDO1), belonging to the mammalian non-heme Fe(II) dioxygenases family, is a key enzyme for cysteine catabolism. Its activity and expression is regulated through multiple mechanisms. CDO1 is involved in a spectrum of physiological processes including lipid metabolism, adipogenesis, osteoblastic differentiation, redox homeostasis, fertility, bile acid metabolism, sulfide metabolism, and organismal growth and development. Many of these processes are regulated directly or indirectly by CDO1-mediated metabolism of cysteine. In pathophysiological processes, the degree of CDO1 promoter methylation is closely related to the progression and malignancy of tumors, and overexpression of CDO1 will promote ferroptosis of cancer cells. Moreover, CDO1 may ameliorate metabolic disorders through the taurine-mediated improvement of lipid metabolism and insulin sensitivity and improve neurodegenerative diseases by regulating cysteine level. Therefore, elucidation of the mechanisms underlying the role of CDO1 would provide a clearer view of the therapeutic potential and possible risks of targeting this important enzyme.

11.
Genes Dis ; 10(3): 915-930, 2023 May.
Article in English | MEDLINE | ID: mdl-37396542

ABSTRACT

Krüppel-like factor 10 (KLF10), also known as TGFß-inducible early gene-1 (TIEG1), was first found in human osteoblasts. Early studies show that KLF10 plays an important role in osteogenic differentiation. Through decades of research, KLF10 has been found to have complex functions in many different cell types, and its expression and function is regulated in multiple ways. As a downstream factor of transforming growth factor ß (TGFß)/SMAD signaling, KLF10 is involved in various biological functions, including glucose and lipid metabolism in liver and adipose tissue, the maintenance of mitochondrial structure and function of the skeletal muscle, cell proliferation and apoptosis, and plays roles in multiple disease processes, such as nonalcoholic steatohepatitis (NASH) and tumor. Besides, KLF10 shows gender-dependent difference of regulation and function in many aspects. In this review, the biological functions of KLF10 and its roles in disease states is updated and discussed, which would provide new insights into the functional roles of KLF10 and a clearer view of potential therapeutic strategies by targeting KLF10.

12.
Acc Chem Res ; 56(15): 2096-2109, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37439704

ABSTRACT

ConspectusIn nature, the coenzyme NAD(P)H is utilized for the transfer of hydrogen and electrons in biocatalytic reduction, which involves the process of recycling, coenzyme usage, and reduction. Inspired by the biological system, a series of nonregenerable achiral and chiral NAD(P)H models were synthesized and employed. However, this approach faced intractable limitations, such as the need for an equivalent amount of mimics, accompanied by the production of byproducts, which resulted in poor atom economy and difficult separation of products. Therefore, the development of new and efficient methodologies for synthesis, regeneration, and application of the NAD(P)H models in organic synthesis is greatly desired.To tackle these challenges, the regenerable achiral and chiral coenzyme NAD(P)H models were designed and synthesized based on the principles of biocatalytic reduction and applied them in biomimetic asymmetric reduction (BMAR) reactions. This Account summarizes our endeavors in rational design, synthesis, regeneration, and application of the NAD(P)H models. First, we will introduce the design and synthesis of regenerable and achiral coenzyme NAD(P)H models (dihydrophenanthridine and dihydropyrroloquinoxaline), which were successfully applied to BMAR of imines and heteroaromatics using homogeneous ruthenium complex as a regeneration catalyst, chiral phosphoric acid as a transfer catalyst, and hydrogen as the terminal reductant. Regenerable and achiral NAD(P)H models require the addition of chiral catalysts or chiral ligands for stereoselective control during the BMAR process. However, the screening of the chiral transfer catalysts is tedious. Narrow substrate scope further limited their application in organic synthesis. Therefore, we designed and synthesized regenerable and chiral NAD(P)H models (CYNAM and FENAM) with planar chirality, which were successfully applied in asymmetric reduction of imines and heteroaromatics using commercially available achiral Brønsted acids, Lewis acids, or organocatalysts as transfer catalysts and a homogeneous ruthenium complex as a regeneration catalyst. Notably, the original factor of enantioselective control is from the chiral NAD(P)H models. In addition, this strategy could also realize the asymmetric reduction of a myriad of electron-deficient tetrasubstituted alkenes, which are challenging substrates in transition metal catalyzed asymmetric hydrogenation. This methodology provides an efficient strategy for the synthesis of chiral building blocks and bioactive molecules. Finally, the detailed mechanism of BMAR, based on the regenerable NAD(P)H models, was elaborated through a combination of experiments and density functional theory calculations. In summary, we believe that the results presented in this Account hold significant implications beyond our work and have the potential for further applications in the field of biomimetic asymmetric catalysis and synthetic methodology.

13.
Genes Dis ; 10(5): 1833-1845, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37492734

ABSTRACT

Higd1a is a conserved gene in evolution which is widely expressed in many tissues in mammals. Accumulating evidence has revealed multiple functions of Higd1a, as a mitochondrial inner membrane protein, in the regulation of metabolic homeostasis. It plays an important role in anti-apoptosis and promotes cellular survival in several cell types under hypoxic condition. And the survival of porcine Sertoli cells facilitated by Higd1a helps to support reproduction. In some cases, Higd1a can serve as a sign of metabolic stress. Over the past several years, a considerable amount of studies about how tumor fate is determined and how cancerous proliferation is regulated by Higd1a have been performed. In this review, we summarize the physiological functions of Higd1a in metabolic homeostasis and its pathophysiological roles in distinct diseases including cancer, nonalcoholic fatty liver disease (NAFLD), type II diabetes and mitochondrial diseases. The prospect of Higd1a with potential to preserve mammal health is also discussed. This review might pave the way for Higd1a-based research and application in clinical practice.

14.
Front Plant Sci ; 14: 1189642, 2023.
Article in English | MEDLINE | ID: mdl-37235004

ABSTRACT

Barley landraces accumulated variation in adapting to extreme highland environments during long-term domestication in Tibet, but little is known about their population structure and genomic selection traces. In this study, tGBS (tunable genotyping by sequencing) sequencing, molecular marker and phenotypic analyses were conducted on 1,308 highland and 58 inland barley landraces in China. The accessions were divided into six sub-populations and clearly distinguished most six-rowed, naked barley accessions (Qingke in Tibet) from inland barley. Genome-wide differentiation was observed in all five sub-populations of Qingke and inland barley accessions. High genetic differentiation in the pericentric regions of chromosomes 2H and 3H contributed to formation of five types of Qingke. Ten haplotypes of the pericentric regions of 2H, 3H, 6H and 7H were further identified as associated with ecological diversification of these sub-populations. There was genetic exchange between eastern and western Qingke but they shared the same progenitor. The identification of 20 inland barley types indicated multiple origins of Qingke in Tibet. The distribution of the five types of Qingke corresponded to specific environments. Two predominant highland-adaptative variations were identified for low temperature tolerance and grain color. Our results provide new insights into the origin, genome differentiation, population structure and highland adaptation in highland barley which will benefit both germplasm enhancement and breeding of naked barley.

15.
Front Physiol ; 14: 1194370, 2023.
Article in English | MEDLINE | ID: mdl-37153226

ABSTRACT

Termites are social insects that live in the soil or in decaying wood, where exposure to pathogens should be common. However, these pathogens rarely cause mortality in established colonies. In addition to social immunity, the gut symbionts of termites are expected to assist in protecting their hosts, though the specific contributions are unclear. In this study, we examined this hypothesis in Odontotermes formosanus, a fungus-growing termite in the family Termitidae, by 1) disrupting its gut microbiota with the antibiotic kanamycin, 2) challenging O. formosanus with the entomopathogenic fungus Metarhizium robertsii, and finally 3) sequencing the resultant gut transcriptomes. As a result, 142531 transcripts and 73608 unigenes were obtained, and unigenes were annotated following NR, NT, KO, Swiss-Prot, PFAM, GO, and KOG databases. Among them, a total of 3,814 differentially expressed genes (DEGs) were identified between M. robertsii infected termites with or without antibiotics treatment. Given the lack of annotated genes in O. formosanus transcriptomes, we examined the expression profiles of the top 20 most significantly differentially expressed genes using qRT-PCR. Several of these genes, including APOA2, Calpain-5, and Hsp70, were downregulated in termites exposed to both antibiotics and pathogen but upregulated in those exposed only to the pathogen, suggesting that gut microbiota might buffer/facilitate their hosts against infection by finetuning physiological and biochemical processes, including innate immunity, protein folding, and ATP synthesis. Overall, our combined results imply that stabilization of gut microbiota can assist termites in maintaining physiological and biochemical homeostasis when foreign pathogenic fungi invade.

16.
Insect Mol Biol ; 32(5): 558-574, 2023 10.
Article in English | MEDLINE | ID: mdl-37209025

ABSTRACT

The white epidermis of silkworms is due to the accumulation of uric acid crystals. Abnormal silkworm uric acid metabolism decreases uric acid production, leading to a transparent or translucent phenotype. The oily silkworm op50 is a mutant strain with a highly transparent epidermis derived from the p50 strain. It shows more susceptibility to Bombyx mori nucleopolyhedrovirus (BmNPV) infection than the wild type; however, the underlying mechanism is unknown. This study analysed the changes in 34 metabolites in p50 and op50 at different times following BmNPV infection based on comparative metabolomics. The differential metabolites were mainly clustered in six metabolic pathways. Of these, the uric acid pathway was identified as critical for resistance in silkworms, as feeding with inosine significantly enhanced larval resistance compared to other metabolites and modulated other metabolic pathways. Additionally, the increased level of resistance to BmNPV in inosine-fed silkworms was associated with the regulation of apoptosis, which is mediated by the reactive oxygen species produced during uric acid synthesis. Furthermore, feeding the industrial strain Jingsong (JS) with inosine significantly increased the level of larval resistance to BmNPV, indicating its potential application in controlling the virus in sericulture. These results lay the foundation for clarifying the resistance mechanism of silkworms to BmNPV and provide new strategies and methods for the biological control of pests.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Bombyx/genetics , Uric Acid/metabolism , Nucleopolyhedroviruses/physiology , Apoptosis , Larva
17.
Insect Sci ; 30(3): 789-802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36097390

ABSTRACT

The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty-six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF-FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy-related metabolic pathways caused by fenpropathrin was shown to be recovered by IF-FA in vitro. Therefore, IF-FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.


Subject(s)
Bombyx , Lepidoptera , Pesticides , Animals , Bombyx/metabolism , Metabolomics , Pesticides/metabolism , Sulfur/metabolism
18.
Pest Manag Sci ; 78(12): 5302-5312, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36054174

ABSTRACT

BACKGROUND: Nucleopolyhedrovirus (NPV), one of the baculoviruses, is a promising biopesticide for pest control. Lepidopteran account for 70% of pests, therefore investigation on highly conserved genes associated with viral infections in the lepidopteran model, the silkworm, will serve as a valuable reference for improving the effectiveness of pest management. BmE74A is a member of the erythroblast transformation-specific (ETS) family of transcription factors in Bombyx mori, which we previously found to be highly conserved and closely associated with BmNPV. This study aimed to elucidate the role of BmE74A in viral infection. RESULTS: A significantly high expression of BmE74A in eggs indicated its important role in embryonic development, as did relatively high expressions in the hemolymph and midgut. Significant differences in BmE74A expression in different resistant strains after BmNPV infection suggested its involvement as a response to viral infection. Moreover, RNA interference (RNAi) and overexpression experiments confirmed the important role of BmE74A in promoting viral infection. BmNPV infection was significantly suppressed and enhanced by BmE74A knockdown and overexpression, respectively. Besides, BmE74A was found to regulate the expression of BmMdm2 and Bmp53. Furthermore, the binding of ETS, the functional domain of BmE74A, to occlusion-derived virus proteins was confirmed by far-western blotting, and four viral proteins that may interact with ETS proteins were identified by mass spectrometry. Similarly, a homolog of BmE74A in Spodoptera litura was also found to be involved in larval susceptibility to BmNPV. CONCLUSION: BmE74A promotes BmNPV proliferation by directly interacting with the virus, which may be related to the suppression of the p53 pathway. © 2022 Society of Chemical Industry.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Bombyx/metabolism , Transcription Factors/genetics , Nucleopolyhedroviruses/physiology , Hemolymph/metabolism , Gene Expression Regulation , Insect Proteins/genetics
19.
J Org Chem ; 87(15): 10398-10407, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35867907

ABSTRACT

A palladium-catalyzed asymmetric hydrogenation of unprotected 3-substituted indoles was developed, providing a series of 3-substituted indolines in excellent yields with ≤94.4:5.6 er. The large sterically hindered bisphosphine ligand played a crucial role in the enantioselective control. In addition, the gram-scale hydrogenation experiment and product derivatizations were performed successfully.

20.
Metabolism ; 134: 155241, 2022 09.
Article in English | MEDLINE | ID: mdl-35750235

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common liver disease. Exercise is an effective strategy against NAFLD, but its underlying molecular mechanism is not completely understood. METHODS: Higd1a, a mitochondrial inner membrane protein, was knocked down or overexpressed in mice livers by tail vein injection of adeno-associated virus (AAV) vectors. High fat diet-induced obese mice were subjected to treadmill training. Alpha mouse liver 12 (AML12) cells were used for in vitro studies. RESULTS: Higd1a was upregulated in mice livers after treadmill exercise training. Knockdown of Higd1a in diet-induced obese mice livers impaired exercise-mediated alleviation of hepatic steatosis, liver injury and inflammation. On the contrary, hepatic overexpression of Higd1a ameliorated fatty liver, liver injury and inflammation in synergy with exercise. Mechanistically, deficiency of Higd1a in hepatocytes promoted free fatty acids (FFAs)-induced apoptosis and oxidative stress, and elevated the cytosolic level of oxidized mitochondrial DNA (ox-mtDNA) to activate NLRP3 inflammasome and JNK signaling, leading to decreased expression of critical genes involved in fatty acid oxidation (FAO), such as Ppara, Cpt1a and Acadm. Overexpression of Higd1a in hepatocytes blunted the above effects, which ultimately increased FAO genes expression and alleviated fat accumulation in hepatocytes. CONCLUSION: These results identify a Higd1a-mediated inhibition of cytosolic ox-mtDNA/NLRP3 inflammasomes/JNK pathway that facilitates exercise-mediated alleviation of hepatosteatosis.


Subject(s)
Apoptosis Regulatory Proteins , Mitochondrial Proteins , Non-alcoholic Fatty Liver Disease , Animals , Apoptosis Regulatory Proteins/genetics , DNA, Mitochondrial , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Mitochondrial Proteins/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...