Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895058

ABSTRACT

Although repolarization has been suggested to propagate in cardiac tissue both theoretically and experimentally, it has been challenging to estimate how and to what extent the propagation of repolarization contributes to relaxation because repolarization only occurs in the course of membrane excitation in normal hearts. We established a mathematical model of a 1D strand of 600 myocytes stabilized at an equilibrium potential near the plateau potential level by introducing a sustained component of the late sodium current (INaL). By applying a hyperpolarizing stimulus to a small part of the strand, we succeeded in inducing repolarization which propagated along the strand at a velocity of 1~2 cm/s. The ionic mechanisms responsible for repolarization at the myocyte level, i.e., the deactivation of both the INaL and the L-type calcium current (ICaL), and the activation of the rapid component of delayed rectifier potassium current (IKr) and the inward rectifier potassium channel (IK1), were found to be important for the propagation of repolarization in the myocyte strand. Using an analogy with progressive activation of the sodium current (INa) in the propagation of excitation, regenerative activation of the predominant magnitude of IK1 makes the myocytes at the wave front start repolarization in succession through the electrical coupling via gap junction channels.


Subject(s)
Heart Ventricles , Myocytes, Cardiac , Humans , Action Potentials/physiology , Myocytes, Cardiac/physiology , Models, Theoretical , Sodium
2.
Sci Rep ; 13(1): 14161, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644037

ABSTRACT

To date, no effective treatment has been established for photoreceptor loss due to energy imbalances, but numerous therapeutic approaches have reported some success in slowing photoreceptor degeneration by downregulating energy demand. However, the detailed mechanisms remain unclear. This study aimed to clarify the composition of ATP consumption factors in photoreceptors in darkness and in light. We introduced mathematical formulas for ionic current activities combined with a phototransduction model to form a new mathematical model for estimating the energy expenditure of each ionic current. The proposed model included various ionic currents identified in mouse rods using a gene expression database incorporating an available electrophysiological recording of each specific gene. ATP was mainly consumed by Na+/K+-ATPase and plasma membrane Ca2+-ATPase pumps to remove excess Na+ and Ca2+. The rod consumed 7 [Formula: see text] 107 molecules of ATP s-1, where 65% was used to remove ions from the cyclic nucleotide-gated channel and 20% from the hyperpolarization-activated current in darkness. Increased light intensity raised the energy requirements of the complex phototransduction cascade mechanisms. Nevertheless, the overall energy consumption was less than that in darkness due to the significant reduction in ATPase activities, where the hyperpolarization-activated current proportion increased to 83%. A better understanding of energy demand/supply may provide an effective tool for investigating retinal pathophysiological changes and analyzing novel therapeutic treatments related to the energy consumption of photoreceptors.


Subject(s)
Physiological Phenomena , Animals , Mice , Adenosine Triphosphatases , Homeostasis , Retinal Rod Photoreceptor Cells , Adenosine Triphosphate
3.
Article in English | MEDLINE | ID: mdl-27758125

ABSTRACT

We presented the powerful techniques for species identification using the short amplicon of mitochondrial cytochrome b gene sequence. Two faecal samples and one single hair sample of the Asian tapir were tested using the new cytochrome b primers. The results showed a high sequence similarity with the mainland Asian tapir group. The comparative sequence analysis of the reserved wild mammals in Thailand and the other endangered mammal species from Southeast Asia comprehensibly verified the potential of our novel primers. The forward and reverse primers were 94.2 and 93.2%, respectively, by the average value of the sequence identity among 77 species sequences, and the overall mean distance was 35.9%. This development technique could provide rapid, simple, and reliable tools for species confirmation. Especially, it could recognize the problematic biological specimens contained less DNA material from illegal products and assist with wildlife crime investigation of threatened species and related forensic casework.


Subject(s)
DNA Barcoding, Taxonomic/methods , Endangered Species , Genes, Mitochondrial , Perissodactyla/genetics , Animals , Base Sequence , Cytochromes b/genetics , DNA Primers , Mammals/classification , Mammals/genetics , Perissodactyla/classification , Phylogeny , Sequence Alignment , Thailand
4.
J Physiol Sci ; 68(5): 541-554, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28770433

ABSTRACT

A new contraction model of cardiac muscle was developed by combining previously described biochemical and biophysical models. The biochemical component of the new contraction model represents events in the presence of Ca2+-crossbridge attachment and power stroke following inorganic phosphate release, detachment evoked by the replacement of ADP by ATP, ATP hydrolysis, and recovery stroke. The biophysical component focuses on Ca2+ activation and force (F b) development assuming an equivalent crossbridge. The new model faithfully incorporates the major characteristics of the biochemical and biophysical models, such as F b activation by transient Ca2+ ([Ca2+]-F b), [Ca2+]-ATP hydrolysis relations, sarcomere length-F b, and F b recovery after jumps in length under the isometric mode and upon sarcomere shortening after a rapid release of mechanical load under the isotonic mode together with the load-velocity relationship. ATP consumption was obtained for all responses. When incorporated in a ventricular cell model, the contraction model was found to share approximately 60% of the total ATP usage in the cell model.


Subject(s)
Adenosine Triphosphate/metabolism , Computer Simulation , Models, Biological , Muscle Contraction/physiology , Myofibrils/physiology , Adenosine Triphosphatases , Animals , Biomechanical Phenomena , Calcium/metabolism , Myosin Subfragments
5.
J Vet Med Sci ; 79(8): 1412-1418, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28701623

ABSTRACT

Sarcocystis species are heteroxenous cyst-forming coccidian protozoan parasites with a wide host range, including rodents. In this study, Sarcocystis spp. samples were isolated from Bandicota indica, Rattus argentiventer, R. tiomanicus and R. norvegicus across five provinces of Thailand. Two major groups of Sarcocystis cysts were determined in this study: large and small cysts. By sequence comparisons and phylogenetic analyses based on the partial sequences of 28S ribosomal DNA, the large cysts showed the highest identity value (99%) with the S. zamani in GenBank database. While the small cysts could be divided into 2 groups of Sarcocystis: S. singaporensis and presupposed S. zuoi. The further analysis on 18S rDNA supported that the 2 isolates (S2 and B6 no.2) were as identified as S. singaporensis shared a high sequence identity with the S. singaporensis in GenBank database and the unidentified Sarcocystis (4 isolates, i.e., B6 no.10, B6 no.12, B10 no.4 and B10 no.7) showed 96.3-99.5% identity to S. zuoi as well as high distinct identity from others Sarcocystis spp. (≤93%). The result indicated that these four samples should be S. zuoi. In this study, we provided complete sequence of internal transcribed spacer 1 (ITS1), 5.8S rDNA and internal transcribed spacer 2 (ITS2) of these three Sarcocystis species and our new primer set could be useful to study the evolution of Sarcocystis.


Subject(s)
Rodent Diseases/parasitology , Sarcocystis/genetics , Sarcocystosis/veterinary , Animals , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal, 28S/genetics , Rodent Diseases/epidemiology , Rodentia , Sarcocystis/classification , Sarcocystis/isolation & purification , Sarcocystosis/epidemiology , Sarcocystosis/parasitology , Thailand/epidemiology
6.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(4): 597-601, 2017 07.
Article in English | MEDLINE | ID: mdl-27159697

ABSTRACT

The Asian tapir (Tapirus indicus) has been classified as Endangered on the IUCN Red List of Threatened Species (2008). Genetic diversity data provide important information for the management of captive breeding and conservation of this species. We analyzed mitochondrial control region (CR) sequences from 37 captive Asian tapirs in Thailand. Multiple alignments of the full-length CR sequences sized 1268 bp comprised three domains as described in other mammal species. Analysis of 16 parsimony-informative variable sites revealed 11 haplotypes. Furthermore, the phylogenetic analysis using median-joining network clearly showed three clades correlated with our earlier cytochrome b gene study in this endangered species. The repetitive motif is located between first and second conserved sequence blocks, similar to the Brazilian tapir. The highest polymorphic site was located in the extended termination associated sequences domain. The results could be applied for future genetic management based in captivity and wild that shows stable populations.


Subject(s)
DNA, Mitochondrial/genetics , Perissodactyla/classification , Polymorphism, Genetic , Sequence Analysis, DNA/methods , Animals , Brazil , Endangered Species , Genetic Variation , Mitochondria/genetics , Perissodactyla/genetics , Phylogeny , Thailand
7.
Article in English | MEDLINE | ID: mdl-24621216

ABSTRACT

Asian tapir (Tapirus indicus) is categorized as Endangered on the 2008 IUCN red list. The first full-length mitochondrial DNA (mtDNA) sequence of Asian tapir is 16,717 bp in length. Base composition shows 34.6% A, 27.2% T, 25.8% C and 12.3% G. Highest polymorphic site is on the control region as typical for many species.


Subject(s)
Genome, Mitochondrial , Perissodactyla/genetics , Animals , DNA, Mitochondrial/genetics , Endangered Species , Molecular Sequence Data , Sequence Analysis, DNA/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...