Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375547

ABSTRACT

Recently, anti-HIV treatment has achieved high efficacy and tolerability. Nevertheless, few data are available about the intracellular penetration of antiretrovirals, partly due to the technical challenges related to intracellular quantification. This work aimed to validate an ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the simultaneous quantification of maraviroc, nevirapine, rilpivirine, dolutegravir, raltegravir, cobicistat, darunavir, ritonavir, atazanavir, efavirenz, elvitegravir, and etravirine within peripheral blood mononuclear cells (PBMCs) and apply it to samples from patients. PBMCs were isolated by density gradient on cell preparation tubes (CPT). Samples were prepared by addition of internal standards (IS), sonication, centrifugation, and drying. Reconstituted extracts underwent chromatographic separation by reversed phase UHPLC and detection was performed by electrospray ionization and multiple reaction monitoring. Method validation followed FDA and EMA guidelines, showing acceptable accuracy, precision, recovery and IS-normalized matrix effect. The application to 56 samples from patients undergoing antiretroviral treatment provided description of intracellular penetration, showing method eligibility for future studies.

2.
Life Sci ; 254: 117784, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32416169

ABSTRACT

Two-dimensional (2D) cell cultures, in which cells grow in flat layers on plastic surfaces, are considered the standard model for use in drug screening and for biological assays. However, these models do not accurately represent in vivo cell organization due to a lack in cell-cell/matrix interactions and in tissue and microenvironment structure. For that reason, three-dimensional (3D) cell cultures have been introduced as an innovative platform in recent years, allowing cells to grow and interact with each other in all three dimensions thanks to an artificial environment. In a 3D model cells show more interesting aspects from a physiological point of view, demonstrating several improvements in viability, morphology, proliferation and differentiations, response to external and internal stimuli, drug metabolism and efficacy and in vivo relevance. This review explores recent techniques in the development of 3D cell models with a particular focus on their application from a pharmacological point of view, starting from the concept of spheroid models generated by scaffold-free or scaffold-based techniques. Finally, special attention is paid to the concept of organoids, 3D constructs that replicate the 3D architecture of intact organs and the technology involved.


Subject(s)
Cell Culture Techniques/methods , Drug Evaluation, Preclinical/methods , Organoids/cytology , Spheroids, Cellular , Animals , Humans
3.
Front Pharmacol ; 8: 167, 2017.
Article in English | MEDLINE | ID: mdl-28424618

ABSTRACT

VGF is a propeptide of 617 amino acids expressed throughout the central and the peripheral nervous system. VGF and peptides derived from its processing have been found in dense core vesicles and are released from neuronal and neuroendocrine cells via the regulated secretory pathway. Among VGF-derived neuropeptides, TLQP-21 (VGF556-576) has raised a huge interest and is one of most studied. TLQP-21 is a multifunctional neuropeptide involved in the control of several physiological functions, potentially including energy homeostasis, pain modulation, stress responsiveness and reproduction. Although little information is available about its receptor and the intracellular mechanisms mediating its biological effects, recent reports suggest that TLQP-21 may bind to the complement receptors C3aR1 and/or gC1qR. The first aim of this study was to ascertain the existence and nature of TLQP-21 binding sites in CHO cells. Secondly, we endeavored to characterize the ligand binding to these sites by using a small panel of VGF-derived peptides. And finally, we investigated the influence of TLQP-21 on selected intracellular signaling pathways. We report that CHO cells express a single class of saturable and specific binding sites for TLQP-21 with an affinity and capacity of Kd = 0.55 ± 0.05 × 10-9 M and Bmax = 81.7 ± 3.9 fmol/mg protein, respectively. Among the many bioactive products derived from the C-terminal region of VGF that we tested, TLQP-21 was the most potent in stimulating intracellular calcium mobilization in CHO cells; this effect is primarily due to its C-terminal fragment (HFHH-10). TLQP-21 induced rapid and transient dephosphorylation of phospholipase Cγ1 and phospholipase A2. Generation of IP3 and diacylglycerol was crucial for TLQP-21 bioactivity. In conclusion, our results suggest that the receptor stimulated by TLQP-21 belongs to the family of the Gq-coupled receptors, and its activation first increases membrane-lipid derived second messengers which thereby induce the mobilization of Ca2+ from the endoplasmic reticulum followed by a slower store-operated Ca2+ entry from outside the cell.

4.
Cardiovasc Diabetol ; 11: 129, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23066908

ABSTRACT

BACKGROUND: The aim of this study was to investigate whether obestatin (OB), a peptide mediator encoded by the ghrelin gene exerting a protective effect in ischemic reperfused heart, is able to reduce cardiac dysfunctions in adult diabetic rats. METHODS: Diabetes was induced by STZ injection (50 mg/kg) in Wistar rats (DM). OB was administered (25 µg/kg) twice a day for 6 weeks. Non-diabetic (ND) rats and DM rats were distributed into four groups: untreated ND, OB-treated ND, untreated DM, OB-treated DM. Cardiac contractility and ß-adrenergic response were studied on isolated papillary muscles. Phosphorylation of AMPK, Akt, ERK1/2 and GSK3ß as well ß-1 adrenoreceptors levels were detected by western blot, while α-MHC was measured by RT-PCR. RESULTS: OB preserved papillary muscle contractility (85 vs 27% of ND), ß-adrenergic response (103 vs 65% of ND), as well ß1-adrenoreceptors and α-MHC levels in diabetic myocardial tissue. Moreover, OB up-regulated the survival kinases Akt and ERK1/2, and enhanced AMPK and GSK3ß phosphorylation. OB corrected oxidative unbalance, reduced pro-inflammatory cytokine TNF-α plasma levels, NFkB translocation and pro-fibrogenic factors expression in diabetic myocardium. CONCLUSIONS: OB displays a significant beneficial effect against the alterations of contractility and ß-adrenergic response in the heart of STZ-treated diabetic rats, which was mainly associated with the ability of OB to up-regulate the transcription of ß1-adrenergic receptors and α-MHC; this protective effect was accompanied by the ability to restore oxidative balance and to promote phosphorylation/modulation of AMPK and pro-survival kinases such as Akt, ERK1/2 and GSK3ß.


Subject(s)
Cardiotonic Agents/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Heart Diseases/drug therapy , Myocardial Contraction/drug effects , Papillary Muscles/drug effects , Peptide Hormones/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Blotting, Western , Cell Line , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Heart Diseases/etiology , Heart Diseases/metabolism , Heart Diseases/physiopathology , Hypoglycemic Agents/pharmacology , Inflammation Mediators/blood , Male , Metformin/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Papillary Muscles/metabolism , Papillary Muscles/physiopathology , Phosphorylation , Polymerase Chain Reaction , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Receptors, Adrenergic, beta-1/metabolism , Recovery of Function , Time Factors , Tumor Necrosis Factor-alpha/blood , Ventricular Myosins/genetics , Ventricular Myosins/metabolism
5.
Biochem J ; 441(1): 511-22, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21880012

ABSTRACT

The peptides encoded by the VGF gene are gaining biomedical interest and are increasingly being scrutinized as biomarkers for human disease. An endocrine/neuromodulatory role for VGF peptides has been suggested but never demonstrated. Furthermore, no study has demonstrated so far the existence of a receptor-mediated mechanism for any VGF peptide. In the present study, we provide a comprehensive in vitro, ex vivo and in vivo identification of a novel pro-lipolytic pathway mediated by the TLQP-21 peptide. We show for the first time that VGF-immunoreactivity is present within sympathetic fibres in the WAT (white adipose tissue) but not in the adipocytes. Furthermore, we identified a saturable receptor-binding activity for the TLQP-21 peptide. The maximum binding capacity for TLQP-21 was higher in the WAT as compared with other tissues, and selectively up-regulated in the adipose tissue of obese mice. TLQP-21 increases lipolysis in murine adipocytes via a mechanism encompassing the activation of noradrenaline/ß-adrenergic receptors pathways and dose-dependently decreases adipocytes diameters in two models of obesity. In conclusion, we demonstrated a novel and previously uncharacterized peripheral lipolytic pathway encompassing the VGF peptide TLQP-21. Targeting the sympathetic nerve-adipocytes interaction might prove to be a novel approach for the treatment of obesity-associated metabolic complications.


Subject(s)
Neuropeptides/metabolism , Peptide Fragments/pharmacology , Adipocytes/cytology , Adipocytes/drug effects , Animals , Body Composition , Dietary Fats/adverse effects , Dietary Fats/metabolism , Male , Mice , NIH 3T3 Cells , Nerve Growth Factors , Obesity/chemically induced , Obesity/metabolism , Protein Binding , Protein Transport , Receptors, Cell Surface
6.
Peptides ; 32(12): 2514-21, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22074955

ABSTRACT

Ghrelin is a gastric peptide, discovered by Kojima et al. (1999) [55] as a result of the search for an endogenous ligand interacting with the "orphan receptor" GHS-R1a (growth hormone secretagogue receptor type 1a). Ghrelin is composed of 28 aminoacids and is produced mostly by specific cells of the stomach, by the hypothalamus and hypophysis, even if its presence, as well as that of its receptors, has been demonstrated in many other tissues, not least in gonads. Ghrelin potently stimulates GH release and participates in the regulation of energy homeostasis, increasing food intake, decreasing energy output and exerting a lipogenetic effect. Furthermore, ghrelin influences the secretion and motility of the gastrointestinal tract, especially of the stomach, and, above all, profoundly affects pancreatic functions. Despite of these previously envisaged activities, it has recently been hypothesized that ghrelin regulates several aspects of reproductive physiology and pathology. In conclusion, ghrelin not only cooperates with other neuroendocrine factors, such as leptin, in the modulation of energy homeostasis, but also has a crucial role in the regulation of the hypothalamic-pituitary gonadal axis. In the current review we summarize the main targets of this gastric peptide, especially focusing on the reproductive system.


Subject(s)
Energy Metabolism , Ghrelin/physiology , Reproduction , Animals , Female , Ghrelin/blood , Ghrelin/pharmacology , Gonadotropins/metabolism , Gonads/physiology , Homeostasis , Humans , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , Male , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/physiology , Pregnancy , Puberty/drug effects , Puberty/physiology , Rats , Receptors, Ghrelin/genetics , Receptors, Ghrelin/physiology
7.
Biochim Biophys Acta ; 1811(6): 386-96, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21435395

ABSTRACT

The acylated peptide ghrelin (AG) and its endogenous non-acylated isoform (UAG) protect cardiomyocytes, pancreatic ß-cells, and preadipocytes from apoptosis, and induce preadipocytes differentiation into adipocytes. These events are mediated by AG and UAG binding to a still unidentified receptor, which determines the activation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) ERK1/2. AG and UAG also possess antilipolytic activity in vitro, but the underlying mechanism remains unknown. Thus, the objective of the current study was to characterize the molecular events involved in AG/UAG receptor signaling cascade. We treated rat primary visceral adipocytes with isoproterenol (ISO) and forskolin (FSK) to stimulate lipolysis, simultaneously incubating them with or without AG or UAG. Both peptides blocked ISO- and FSK-induced lipolysis. By direct measurement of cAMP intracellular content, we demonstrated that AG/UAG effect was associated to a reduction of ISO-induced cAMP accumulation. Moreover, the cAMP analog 8Br-cAMP abolished AG/UAG effect. As AG and UAG were ineffective against lipolysis induced by db-cAMP, another poorly hydrolyzable cAMP analog, phosphodiesterase (PDE) involvement was hypothesized. Indeed, cilostamide, a specific PDE3B inhibitor, blocked AG/UAG effect on ISO-induced lipolysis. Furthermore, the PI3K inhibitor wortmannin and AKT inhibitor 1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo(4,5-g)quinoxalin-7-yl)phenyl)methyl)-4piperidinyl)-2H-benzimidazol-2-one trifluoroacetate also blocked AG/UAG action, suggesting a role in PDE3B activation. In particular, PI3K isoenzyme gamma (PI3Kγ) selective inhibition through the compound AS605240 prevented AG/UAG effect on ISO-stimulated lipolysis, hampering AKT phosphorylation on Ser(473). Taken together, these data demonstrate for the first time that AG/UAG attenuation of ISO-induced lipolysis involves PI3Kγ/AKT and PDE3B.


Subject(s)
Adipocytes/drug effects , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Ghrelin/pharmacology , Isoproterenol/pharmacology , Lipolysis/drug effects , Acylation , Adipocytes/cytology , Adipocytes/metabolism , Adrenergic beta-Agonists/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Benzimidazoles/pharmacology , Blotting, Western , Cells, Cultured , Colforsin/pharmacology , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Drug Interactions , Ghrelin/metabolism , Glycerol/metabolism , Intra-Abdominal Fat/cytology , Isoproterenol/metabolism , Male , Phosphodiesterase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Quinolones/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Thiazolidinediones/pharmacology
8.
Am J Physiol Heart Circ Physiol ; 299(2): H470-81, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20525876

ABSTRACT

Obestatin, a newly discovered peptide encoded by the ghrelin gene, induces the expression of genes regulating pancreatic beta-cell differentiation, insulin biosynthesis, and glucose metabolism. It also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase (PI3K) and ERK1/2 in pancreatic beta-cells and human islets. Since these kinases have been shown to protect against myocardial injury, we sought to investigate whether obestatin would exert cardioprotective effects. Both isolated perfused rat heart and cultured cardiomyocyte models of ischemia-reperfusion (I/R) were used to measure infarct size and cell apoptosis as end points of injury. The presence of specific obestatin receptors on cardiac cells as well as the signaling pathways underlying the obestatin effect were also studied. In the isolated heart, the addition of rat obestatin-(1-23) before ischemia reduced infarct size and contractile dysfunction in a concentration-dependent manner, whereas obestatin-(23-1), a synthetic analog with an inverse aminoacid sequence, was ineffective. The cardioprotective effect of obestatin-(1-23) was observed at concentrations of 10-50 nmol/l and was abolished by inhibiting PI3K or PKC by the addition of wortmannin (100 nmol/l) or chelerythrine, (5 micromol/l), respectively. In rat H9c2 cardiac cells or isolated ventricular myocytes subjected to I/R, 50 nmol/l obestatin-(1-23) reduced cardiomyocyte apoptosis and reduced caspase-3 activation; the antiapoptotic effect was blocked by the inhibition of PKC, PI3K, or ERK1/2 pathways. In keeping with these functional findings, radioreceptor binding results revealed the presence of specific high-affinity obestatin-binding sites, mainly localized on membranes of the ventricular myocardium and cardiomyocytes. Our data suggest that, by acting on specific receptors, obestatin-(1-23) activates PI3K, PKC-epsilon, PKC-delta, and ERK1/2 signaling and protects cardiac cells against myocardial injury and apoptosis induced by I/R.


Subject(s)
Apoptosis , Myocardial Contraction , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Peptide Hormones/metabolism , Ventricular Function, Left , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Myocardial Contraction/drug effects , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Peptide Hormones/administration & dosage , Peptides/pharmacology , Perfusion , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase C-delta/antagonists & inhibitors , Protein Kinase C-delta/metabolism , Protein Kinase C-epsilon/antagonists & inhibitors , Protein Kinase C-epsilon/metabolism , Protein Kinase Inhibitors/pharmacology , Rats , Receptors, Ghrelin/metabolism , Signal Transduction , Time Factors , Ventricular Function, Left/drug effects
9.
J Mol Endocrinol ; 45(1): 9-17, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20382773

ABSTRACT

The ghrelin gene products, namely acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (Ob), were shown to prevent pancreatic beta-cell death and to improve beta-cell function under treatment with cytokines, which are major cause of beta-cell destruction in diabetes. Moreover, AG had been described previously to prevent streptozotocin (STZ)-induced diabetes in rats; however, the effect of either UAG or Ob has never been examined in this context. In the present study, we investigated the potential of UAG and Ob to increase islet beta-cell mass and to reduce diabetes at adult age in STZ-treated neonatal rats. One-day-old rats were injected with STZ and subsequently administered with either AG, UAG or Ob for 7 days. On day 70, plasma glucose levels, plasma and pancreatic insulin levels, pancreatic islet area and number, insulin and pancreatic/duodenal homeobox-1 (Pdx1) gene expression, and antiapoptotic BCL2 protein expression were determined. Similarly to AG, both UAG and Ob counteracted STZ-induced high glucose levels and improved plasma and pancreatic insulin levels, which were reduced by the diabetogenic compound. UAG and Ob increased islet area, islet number, and beta-cell mass with respect to STZ treatment alone. Finally, in STZ-treated animals, UAG and Ob up-regulated insulin and Pdx1 mRNA and increased the expression of BCL2 similarly to AG. Taken together, our results suggest that in STZ-treated newborn rats, UAG and Ob improve glucose metabolism and preserve islet cell mass, granting a therapeutic potential in medical conditions associated with impaired beta-cell function.


Subject(s)
Diabetes Mellitus, Experimental/prevention & control , Ghrelin/pharmacology , Ghrelin/therapeutic use , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Peptide Hormones/pharmacology , Peptide Hormones/therapeutic use , Animals , Animals, Newborn , Diabetes Mellitus, Experimental/physiopathology , Female , Ghrelin/chemistry , Islets of Langerhans/physiology , Peptide Hormones/chemistry , Pregnancy , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley
10.
Endocrinology ; 151(7): 3286-98, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20410201

ABSTRACT

The current study aimed to compare the effects of the peptide hormone ghrelin and des-G, its unacylated isoform, on glucose and fatty acid uptake and to identify des-G-specific binding sites in cardiomyocytes. In the murine HL-1 adult cardiomyocyte line, ghrelin and des-G had opposing metabolic effects: des-G increased medium-chain fatty acid uptake (BODIPY fluorescence intensity), whereas neither ghrelin alone nor in combination with des-G did so. Ghrelin inhibited the increase in glucose uptake normally induced by insulin (rate of 2-[(3)H]deoxy-d-glucose incorporation), but des-G did not; des-G was also able to partially reverse the inhibitory effect of ghrelin. In HL-1 cells and primary cultures of neonatal rat cardiomyocytes, des-G but not ghrelin increased insulin-induced translocation of glucose transporter-4 from nuclear to cytoplasmic compartments (immunohistochemistry and quantitative confocal analysis). AKT was phosphorylated by insulin but not affected by ghrelin or des-G, whereas neither AMP-activated protein kinase nor phosphatase and tensin homolog deleted from chromosome 10 was phosphorylated by any treatments. HL-1 and primary-cultured mouse and rat cardiomyocytes each possessed two independent specific binding sites for des-G not recognized by ghrelin (radioreceptor assays). Neither ghrelin nor des-G affected viability (dimethylthiazol diphenyltetrazolium bromide assays), whereas both isoforms were equally protective against apoptosis. Therefore, in cardiomyocytes, des-G binds to specific receptors and has effects on glucose and medium-chain fatty acid uptake that are distinct from those of ghrelin. Real-time PCR indicated that expression levels of ghrelin O-acyltransferase RNA were comparable between HL-1 cells, human myocardial tissue, and human and murine stomach tissue, indicating the possibility of des-G conversion to ghrelin within our model.


Subject(s)
Ghrelin/metabolism , Ghrelin/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Binding Sites , Biological Transport/drug effects , Cell Line , Gastric Mucosa/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Immunoblotting , Immunohistochemistry , Insulin/pharmacology , Lauric Acids/metabolism , Mice , Microscopy, Confocal , Myocytes, Cardiac/cytology , PTEN Phosphohydrolase/metabolism , Polymerase Chain Reaction , Proto-Oncogene Proteins c-akt/metabolism , Rats
11.
Cytokine Growth Factor Rev ; 20(2): 137-52, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19297235

ABSTRACT

Ghrelin, an acylated 28 amino acid gastric peptide, was isolated from the stomach as an endogenous ligand for growth hormone (GH) secretagogue receptor in 1999. Circulating ghrelin is mainly produced by specific cells in the stomach's oxyntic glands. Ghrelin potently stimulates GH release and food intake and exhibits diverse effects, including ones on glucose metabolism and on secretion and motility of the gastrointestinal tract. Besides these effects on food intake and energy homeostasis, ghrelin is also involved in controlling reproductive functions, and a role for it as a novel regulator of the hypothalamic-pituitary gonadal axis is clearly emerging. We review recent ghrelin research with emphasis on its roles in the reproductive axis.


Subject(s)
Ghrelin/physiology , Reproduction/physiology , Animals , Eating/physiology , Energy Metabolism/physiology , Female , Glucose/metabolism , Homeostasis/physiology , Humans , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , Male , Receptors, Ghrelin/physiology , Reproduction/drug effects , Signal Transduction/physiology , Testis/metabolism
12.
Endocrinology ; 149(5): 2191-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18218693

ABSTRACT

Progenitor cells in the subgranular zone of the hippocampus may be of significance for functional recovery after various injuries because they have a regenerative potential to form new neuronal cells. The hippocampus has been shown to express the GH secretagogue (GHS) receptor 1a, and recent studies suggest GHS to both promote neurogenesis and have neuroprotective effects. The aim of the present study was to investigate whether GHS could stimulate cellular proliferation and exert cell protective effects in adult rat hippocampal progenitor (AHP) cells. Both hexarelin and ghrelin stimulated increased incorporation of (3)H-thymidine, indicating an increased cell proliferation. Furthermore, hexarelin, but not ghrelin, showed protection against growth factor deprivation-induced apoptosis, as measured by annexin V binding and caspase-3 activity and also against necrosis, as measured by lactate dehydrogenase release. Hexarelin activated the MAPK and the phosphatidylinositol 3-kinase/Akt pathways, whereas ghrelin activated only the MAPK pathway. AHP cells did not express the GHS receptor 1a, but binding studies could show specific binding of both hexarelin and ghrelin, suggesting effects to be mediated by an alternative GHS receptor subtype. In conclusion, our results suggest a differential effect of hexarelin and ghrelin in AHP cells. We have demonstrated stimulation of (3)H-thymidine incorporation with both hexarelin and ghrelin. Hexarelin, but not ghrelin, also showed a significant inhibition of apoptosis and necrosis. These results suggest a novel cell protective and proliferative role for GHS in the central nervous system.


Subject(s)
Cell Proliferation/drug effects , Cytoprotection/drug effects , Growth Hormone-Releasing Hormone/analogs & derivatives , Growth Hormone/metabolism , Hippocampus/drug effects , Stem Cells/drug effects , Animals , Cells, Cultured , Ghrelin/analogs & derivatives , Ghrelin/pharmacology , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Necrosis , Oligopeptides/pharmacology , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Receptors, Ghrelin/metabolism , Signal Transduction/drug effects , Stem Cells/pathology , Stem Cells/physiology
13.
Diabetes ; 57(4): 967-79, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18162507

ABSTRACT

OBJECTIVE: Obestatin is a newly discovered peptide encoded by the ghrelin gene whose biological functions are poorly understood. We investigated obestatin effect on survival of beta-cells and human pancreatic islets and the underlying signaling pathways. RESEARCH DESIGN AND METHODS: beta-Cells and human islets were used to assess obestatin effect on cell proliferation, survival, apoptosis, intracellular signaling, and gene expression. RESULTS: Obestatin showed specific binding on HIT-T15 and INS-1E beta-cells, bound to glucagon-like peptide-1 receptor (GLP-1R), and recognized ghrelin binding sites. Obestatin exerted proliferative, survival, and antiapoptotic effects under serum-deprived conditions and interferon-gamma/tumor necrosis factor-alpha/interleukin-1 beta treatment, particularly at pharmacological concentrations. Ghrelin receptor antagonist [D-Lys(3)]-growth hormone releasing peptide-6 and anti-ghrelin antibody prevented obestatin-induced survival in beta-cells and human islets. beta-Cells and islet cells released obestatin, and addition of anti-obestatin antibody reduced their viability. Obestatin increased beta-cell cAMP and activated extracellular signal-related kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt; its antiapoptotic effect was blocked by inhibition of adenylyl cyclase/cAMP/protein kinase A (PKA), PI 3-kinase/Akt, and ERK1/2 signaling. Moreover, obestatin upregulated GLP-1R mRNA and insulin receptor substrate-2 (IRS-2) expression and phosphorylation. The GLP-1R antagonist exendin-(9-39) reduced obestatin effect on beta-cell survival. In human islets, obestatin, whose immunoreactivity colocalized with that of ghrelin, promoted cell survival and blocked cytokine-induced apoptosis through cAMP increase and involvement of adenylyl cyclase/cAMP/PKA signaling. Moreover, obestatin 1) induced PI 3-kinase/Akt, ERK1/2, and also cAMP response element-binding protein phosphorylation; 2) stimulated insulin secretion and gene expression; and 3) upregulated GLP-1R, IRS-2, pancreatic and duodenal homeobox-1, and glucokinase mRNA. CONCLUSIONS: These results indicate that obestatin promotes beta-cell and human islet cell survival and stimulates the expression of main regulatory beta-cell genes, identifying a new role for this peptide within the endocrine pancreas.


Subject(s)
Cell Survival/drug effects , Gene Expression Regulation/drug effects , Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Peptide Hormones/pharmacology , Caspase 3/metabolism , Cell Culture Techniques , Cell Division/drug effects , Cell Membrane/drug effects , Cell Membrane/physiology , Cyclic AMP/metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Insulin Receptor Substrate Proteins , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Intracellular Signaling Peptides and Proteins/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Islets of Langerhans/drug effects , Peptide Hormones/metabolism , Phosphoproteins/drug effects , Phosphoproteins/metabolism
14.
Vitam Horm ; 77: 301-24, 2008.
Article in English | MEDLINE | ID: mdl-17983862

ABSTRACT

Ghrelin, a 28-amino acid octanoylated peptide predominantly produced by the stomach, has been discovered to be a natural ligand of the type 1a growth hormone secretagogue receptor (GHSR1a). Ghrelin has recently attracted the interest as a new GH-releasing and orexigenic factor. However, ghrelin exerts several other activities, including regulation of tissue growth and development and control of neoplastic cell proliferation. Several endocrine and nonendocrine cancer cells (pituitary adenomas; gastroenteropancreatic and pulmonary carcinoids; colorectal neoplasms, thyroid tumors; lung, breast, and pancreatic carcinomas) as well as their related cell lines have been shown able to express ghrelin both at mRNA and at protein level. Many of the above-listed tumors express GHSR1a and/or alternative GHS receptor subtypes such as the type 1b GHSR, a truncated isoform of GHSR1a, and binding sites able to recognize ghrelin independently of its acylation. Evidence that ghrelin and multiple ghrelin/GHS receptors are coexpressed in cancer cell lines and tumoral tissues from organs, such as the breast, that do not express these receptors in physiological conditions suggests that the ghrelin system is likely to play an important autocrine/paracrine role in some cancers. This chapter highlights the evidence for the expression of ghrelin and its receptors in one of the most frequent human malignancies, the prostate cancer, and information regarding their potential functional role in related cell lines.


Subject(s)
Ghrelin/metabolism , Prostatic Neoplasms/metabolism , Receptors, Ghrelin/metabolism , Animals , Autocrine Communication , Humans , Male , Paracrine Communication , Rats
15.
Neuroendocrinology ; 86(3): 147-64, 2007.
Article in English | MEDLINE | ID: mdl-17622734

ABSTRACT

Ghrelin is a gastric polypeptide displaying strong GH-releasing activity by activation of the type 1a GH secretagogue receptor (GHS-R1a) located in the hypothalamus-pituitary axis. GHS-R1a is a G-protein-coupled receptor that, upon the binding of ghrelin or synthetic peptidyl and non-peptidyl ghrelin-mimetic agents known as GHS, preferentially couples to G(q), ultimately leading to increased intracellular calcium content. Beside the potent GH-releasing action, ghrelin and GHS influence food intake, gut motility, sleep, memory and behavior, glucose and lipid metabolism, cardiovascular performances, cell proliferation, immunological responses and reproduction. A growing body of evidence suggests that the cloned GHS-R1a alone cannot be the responsible for all these effects. The cloned GHS-R1b splice variant is apparently non-ghrelin/GHS-responsive, despite demonstration of expression in neoplastic tissues responsive to ghrelin not expressing GHS-R1a; GHS-R1a homologues sensitive to ghrelin are capable of interaction with GHS-R1b, forming heterodimeric species. Furthermore, GHS-R1a-deficient mice do not show evident abnormalities in growth and diet-induced obesity, suggesting the involvement of another receptor. Additional evidence of the existence of another receptor is that ghrelin and GHS do not always share the same biological activities and activate a variety of intracellular signalling systems besides G(q). The biological actions on the heart, adipose tissue, pancreas, cancer cells and brain shared by ghrelin and the non-acylated form of ghrelin (des-octanoyl ghrelin), which does not bind GHS-R1a, represent the best evidence for the existence of a still unknown, functionally active binding site for this family of molecules. Finally, located in the heart and blood vessels is the scavenger receptor CD36, involved in the endocytosis of the pro-atherogenic oxidized low-density lipoproteins, which is a pharmacologically and structurally distinct receptor for peptidyl GHS and not for ghrelin. This review highlights the most recently discovered features of GHS-R1a and the emerging evidence for a novel group of receptors that are not of the GHS1a type; these appear involved in the transduction of the multiple levels of information provided by GHS and ghrelin.


Subject(s)
Receptors, Ghrelin/physiology , Signal Transduction/physiology , Animals , Humans , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
16.
Trends Endocrinol Metab ; 18(6): 246-51, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17632010

ABSTRACT

Although cortistatin (CST) shares great structural homology with somatostatin (SST) and binds to all SST receptor subtypes with similar affinity, these neurohormones have divergent biological roles, as evidenced by their different patterns of tissue expression and biological actions. Moreover, CST, but not SST, can bind to the proadrenomedullin N-terminal peptide (PAMP) receptor MrgX2 and type 1a growth hormone secretagogue (GHS) receptor (GHSR-1a), also known as the 'ghrelin' receptor. These findings suggest that CST-specific actions could be mediated by the GHSR-1a and CST might represent a link between the ghrelin and the SST systems. Here, we review the data leading to this working hypothesis and discuss the in vitro, in vivo and clinical implications of potential SST-receptor-independent, GHSR-1a-mediated neuroendocrine and metabolic effects of CST.


Subject(s)
Brain/physiology , Cell Communication/physiology , Intestines/physiology , Neuropeptides/physiology , Peptide Hormones/physiology , Somatostatin/physiology , Animals , Ghrelin , Humans , Models, Biological , Neuropeptides/metabolism , Neurosecretory Systems/physiology , Receptors, Neuropeptide/metabolism , Receptors, Somatostatin/metabolism , Receptors, Somatostatin/physiology , Tissue Distribution
17.
Mol Biol Cell ; 18(3): 986-94, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17202410

ABSTRACT

Ghrelin is an acylated peptidyl gastric hormone acting on the pituitary and hypothalamus to stimulate appetite, adiposity, and growth hormone release, through activation of growth hormone secretagogue receptor (GHSR)-1a receptor. Moreover, ghrelin features several activities such as inhibition of apoptosis, regulation of differentiation, and stimulation or inhibition of proliferation of several cell types. Ghrelin acylation is absolutely required for both GHSR-1a binding and its central endocrine activities. However, the unacylated ghrelin form, des-acyl ghrelin, which does not bind GHSR-1a and is devoid of any endocrine activity, is far more abundant than ghrelin in plasma, and it shares with ghrelin some of its cellular activities. In here we show that both ghrelin and des-acyl ghrelin stimulate proliferating C2C12 skeletal myoblasts to differentiate and to fuse into multinucleated myotubes in vitro through activation of p38. Consistently, both ghrelin and des-acyl ghrelin inhibit C2C12 proliferation in growth medium. Moreover, the ectopic expression of ghrelin in C2C12 enhances differentiation and fusion of these myoblasts in differentiation medium. Finally, we show that C2C12 cells do not express GHSR-1a, but they do contain a common high-affinity binding site recognized by both acylated and des-acylated ghrelin, suggesting that the described activities on C2C12 are likely mediated by this novel, yet unidentified receptor for both ghrelin forms.


Subject(s)
Cell Differentiation/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Peptide Hormones/pharmacology , Animals , Binding Sites/drug effects , Biomarkers , Cell Fusion , Cell Proliferation/drug effects , Culture Media , DNA/biosynthesis , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Ghrelin , Mice , Muscle Fibers, Skeletal/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Ghrelin , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Endocrinology ; 148(2): 512-29, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17068144

ABSTRACT

Among its pleiotropic actions, ghrelin modulates insulin secretion and glucose metabolism. Herein we investigated the role of ghrelin in pancreatic beta-cell proliferation and apoptosis induced by serum starvation or interferon (IFN)-gamma/TNF-alpha, whose synergism is a major cause for beta-cell destruction in type I diabetes. HIT-T15 beta-cells expressed ghrelin but not ghrelin receptor (GRLN-R), which binds acylated ghrelin (AG) only. However, both unacylated ghrelin (UAG) and AG recognized common high-affinity binding sites on these cells. Either AG or UAG stimulated cell proliferation through Galpha(s) protein and prevented serum starvation- and IFN-gamma/TNF-alpha-induced apoptosis. Antighrelin antibody enhanced apoptosis in either the presence or absence of serum but not cytokines. AG and UAG even up-regulated intracellular cAMP. Blockade of adenylyl cyclase/cAMP/protein kinase A signaling prevented the ghrelin cytoprotective effect. AG and UAG also activated phosphatidyl inositol 3-kinase (PI3K)/Akt and ERK1/2, whereas PI3K and MAPK inhibitors counteracted the ghrelin antiapoptotic effect. Furthermore, AG and UAG stimulated insulin secretion from HIT-T15 cells. In INS-1E beta-cells, which express GRLN-R, AG and UAG caused proliferation and protection against apoptosis through identical signaling pathways. Noteworthy, both peptides inhibited cytokine-induced NO increase in either HIT-T15 or INS-1E cells. Finally, they induced cell survival and protection against apoptosis in human islets of Langerhans. These expressed GRLN-R but showed also UAG and AG binding sites. Our data demonstrate that AG and UAG promote survival of both beta-cells and human islets. These effects are independent of GRLN-R, are likely mediated by AG/UAG binding sites, and involve cAMP/PKA, ERK1/2, and PI3K/Akt.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/physiology , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Peptide Hormones/pharmacology , Acylation , Animals , Binding Sites , Cell Line , Cricetinae , Culture Media, Serum-Free/pharmacology , Cyclic AMP/physiology , Cyclic AMP-Dependent Protein Kinase Type II , Cyclic AMP-Dependent Protein Kinases/physiology , Drug Synergism , Extracellular Signal-Regulated MAP Kinases/physiology , GTP-Binding Protein alpha Subunits, Gs/metabolism , Ghrelin , Humans , In Vitro Techniques , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Interferon-gamma/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Peptide Hormones/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Ghrelin , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/pharmacology
19.
J Pathol ; 207(3): 336-45, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16161007

ABSTRACT

Cortistatin (CST), a novel hormone originally described in the rat, mouse, and human cerebral cortex, displays structural and functional similarities to somatostatin (SRIF). CST binds to all five somatostatin receptors and, differently from SRIF, also binds to MrgX2, which has recently been identified as its specific receptor. Little is known about the distribution of CST and MrgX2 in peripheral non-tumour and neoplastic tissues. The aim of the present study was therefore to determine by immunohistochemistry and mRNA analysis (RT-PCR) the distribution of CST and MrgX2 in 56 human non-tumour and 108 tumour tissues, with special reference to neuroendocrine tissue types. Despite the high level of CST mRNA expression in non-tumour and tumour (both neuroendocrine and non-neuroendocrine) tissues, the presence of immunoreactive CST was confirmed in a subset of gastroenteropancreatic, parathyroid, and pituitary non-tumour cells only, and showed a predominantly focal pattern in most neuroendocrine tumours. Co-localization experiments in the gastroenteropancreatic system demonstrated that the normal CST-producing cells are delta cells, while in the adenohypophysis no preferential co-localization of CST with any of the pituitary hormones was observed. MrgX2 mRNA was variably detected in the hypothalamus, pituitary, thyroid, lung, gastroenteropancreatic tract, testis, and ovary, and was negative in the cerebral cortex, parathyroid, and adrenal, as well as in a variety of tumour types. Conversely, immunolocalization of MrgX2 protein was restricted to neurohypophysis and testis, whilst all tumours analysed were negative. A possible explanation for the discrepancy between RT-PCR and immunohistochemistry is that MrgX2 protein was widely detected in blood vessels, scattered lymphocytes, and gastrointestinal ganglia in both normal and neoplastic samples. The findings demonstrate a selective distribution of CST in normal and neoplastic neuroendocrine tissues, suggesting that CST might have a broader functional role than previously assumed, whereas possible autocrine/paracrine actions via its recently described specific receptor MrgX2 are restricted to selected tissues.


Subject(s)
Carcinoma, Neuroendocrine/chemistry , Neoplasm Proteins/analysis , Nerve Tissue Proteins/analysis , Neuropeptides/analysis , Neurosecretory Systems/chemistry , Receptors, G-Protein-Coupled/analysis , Receptors, Neuropeptide/analysis , Humans , Immunohistochemistry/methods , Neuropeptides/immunology , RNA, Messenger/analysis , RNA, Neoplasm/analysis , Receptors, Ghrelin , Receptors, Somatostatin/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods
20.
Semin Vasc Med ; 4(2): 107-14, 2004 May.
Article in English | MEDLINE | ID: mdl-15478030

ABSTRACT

Ghrelin, a 28-amino acid peptide mainly produced by the stomach, is a natural ligand of the type 1a growth hormone secretagogue receptor (GHS-R1a) that also binds synthetic peptidyl and nonpeptidyl GHSs. GHS-R1a and various GHS-R1a-related receptor subtypes are widely distributed in central and peripheral tissues, particularly in the cardiovascular system. In agreement with this distribution of GHS-R, ghrelin and synthetic GHSs exert a wide spectrum of actions, including cardiac and vascular activities. Ghrelin, as well as peptidyl and nonpeptidyl GHSs, is able to increase cardiac performances both in animals and in humans and to exert protective effects on ischemia/reperfusion injury of isolated rat heart. Moreover, both ghrelin and synthetic GHSs have been shown as able to act as survival factors, protecting cardiomyocytes and endothelial cells from doxorubicin-induced apoptosis. Despite the fact that the neuroendocrine actions of ghrelin are dependent on its acylation in serine 3, these cardiovascular effects are exerted by unacylated as well as by acylated ghrelin. This evidence indicates that these actions are not likely to be mediated by a type 1a GHS-R, which, by definition, binds acylated ghrelin only. However, synthetic peptidyl GHSs, but not nonpeptidyl, and even ghrelin itself are able to reduce atherosclerotic lesion development in apolipoprotein-E-deficient mice. This action seems to be mediated by a specific receptor for synthetic peptidyl GHSs only, identified as CD36, a multifunctional B-type scavenger receptor involved in atherogenesis and mainly expressed in cardiomyocytes and microvascular endothelial cells. Thus, there are similarities, but also differences, between ghrelin and synthetic GHSs, in terms of cardiac actions that are likely to be related to the existence of multiple GHS-R subtypes that mediate the cardiovascular actions of the above substances. These actions indicate their potential pharmacotherapeutic implications in cardiovascular diseases.


Subject(s)
Cardiovascular Physiological Phenomena , Receptors, G-Protein-Coupled/physiology , Animals , Binding Sites , Endothelium, Vascular/physiology , Humans , Muscle Contraction/physiology , Papillary Muscles/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Ghrelin , Regional Blood Flow/physiology , Vasodilation/physiology , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...