Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
3.
Nat Commun ; 9(1): 3191, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30266909

ABSTRACT

Huntington's disease is a progressive neurodegenerative disorder caused by polyglutamine-expanded mutant huntingtin (mHTT). Here, we show that the deubiquitinase Usp12 rescues mHTT-mediated neurodegeneration in Huntington's disease rodent and patient-derived human neurons, and in Drosophila. The neuroprotective role of Usp12 may be specific amongst related deubiquitinases, as the closely related homolog Usp46 does not suppress mHTT-mediated toxicity. Mechanistically, we identify Usp12 as a potent inducer of neuronal autophagy. Usp12 overexpression accelerates autophagic flux and induces an approximately sixfold increase in autophagic structures as determined by ultrastructural analyses, while suppression of endogenous Usp12 slows autophagy. Surprisingly, the catalytic activity of Usp12 is not required to protect against neurodegeneration or induce autophagy. These findings identify the deubiquitinase Usp12 as a regulator of neuronal proteostasis and mHTT-mediated neurodegeneration.


Subject(s)
Autophagy/genetics , Neurons/metabolism , Neuroprotection/genetics , Ubiquitin Thiolesterase/genetics , Animals , Cells, Cultured , Drosophila melanogaster , Gene Expression Regulation , HEK293 Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Mutation , Neurons/cytology , Neurons/ultrastructure , RNA Interference , Rats , Ubiquitin Thiolesterase/metabolism
4.
J Huntingtons Dis ; 6(1): 79-91, 2017.
Article in English | MEDLINE | ID: mdl-28339398

ABSTRACT

BACKGROUND: A hallmark of Huntington's disease is the progressive aggregation of full length and N-terminal fragments of polyglutamine (polyQ)-expanded Huntingtin (Htt) into intracellular inclusions. The production of N-terminal fragments appears important for enabling pathology and aggregation; and hence the direct expression of a variety of N-terminal fragments are commonly used to model HD in animal and cellular models. OBJECTIVE: It remains unclear how the length of the N-terminal fragments relates to polyQ - mediated aggregation. We investigated the fundamental intracellular aggregation process of eight different-length N-terminal fragments of Htt in both short (25Q) and long polyQ (97Q). METHODS: N-terminal fragments were fused to fluorescent proteins and transiently expressed in mammalian cell culture models. These included the classic exon 1 fragment (90 amino acids) and longer forms of 105, 117, 171, 513, 536, 552, and 586 amino acids based on wild-type Htt (of 23Q) sequence length nomenclature. RESULTS: N-terminal fragments of less than 171 amino acids only formed inclusions in polyQ-expanded form. By contrast the longer fragments formed inclusions irrespective of Q-length, with Q-length playing a negligible role in extent of aggregation. The inclusions could be classified into 3 distinct morphological categories. One type (Type A) was universally associated with polyQ expansions whereas the other two types (Types B and C) formed independently of polyQ length expansion. CONCLUSIONS: PolyQ-expansion was only required for fragments of less than 171 amino acids to aggregate. Longer fragments aggregated predominately through a non-polyQ mechanism, involving at least one, and probably more distinct clustering mechanisms.


Subject(s)
DNA Repeat Expansion , Huntingtin Protein/metabolism , Peptides , Protein Aggregation, Pathological/metabolism , Animals , Blotting, Western , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Flow Cytometry , Fluorescent Antibody Technique , Genetic Vectors , HEK293 Cells , Humans , Huntingtin Protein/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Microscopy, Confocal , Peptides/genetics , Peptides/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Transfection , Red Fluorescent Protein
5.
Biol Psychiatry ; 82(10): 756-765, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28187857

ABSTRACT

BACKGROUND: Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. METHODS: In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo-/-) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. RESULTS: Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo-/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo-/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo-/- mice showed potentiated horizontal activity in the open field paradigm. CONCLUSIONS: Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders.


Subject(s)
Kynurenine 3-Monooxygenase/deficiency , Kynurenine 3-Monooxygenase/physiology , Psychotic Disorders/genetics , Psychotic Disorders/psychology , Schizophrenia/genetics , Schizophrenic Psychology , Animals , Cerebellum/metabolism , Cerebral Cortex/metabolism , Dextroamphetamine/pharmacology , Kynurenic Acid/metabolism , Kynurenine 3-Monooxygenase/genetics , Mice , Mice, Knockout , Motor Activity/drug effects
6.
Biochim Biophys Acta ; 1860(11 Pt A): 2345-2354, 2016 11.
Article in English | MEDLINE | ID: mdl-27392942

ABSTRACT

BACKGROUND: In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. METHODS: Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. RESULTS AND CONCLUSIONS: Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Tryptophan Oxygenase/metabolism , Animals , Brain/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Inflammation/etiology , Inflammation/metabolism , Kynurenine/blood , Lipopolysaccharides/toxicity , Liver/metabolism , Mice , Mice, Inbred C57BL , Organ Specificity , Tryptophan Oxygenase/genetics
7.
Hum Mol Genet ; 25(9): 1677-89, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26920069

ABSTRACT

Huntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. The polyQ expansion increases the propensity of htt to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins are predicted to slow disease progression in HD models. αB-crystallin (αBc) or HspB5 is a well-characterized member of the small heat shock protein (sHsp) family that reduces mutant htt (mhtt) aggregation and toxicity in vitro and in Drosophila models of HD. Here, we determined if overexpressing αBc in vivo modulates aggregation and delays the onset and progression of disease in a full-length model of HD, BACHD mice. Expression of sHsps in neurodegenerative disease predominantly occurs in non-neuronal cells, and in the brain, αBc is mainly found in astrocytes and oligodendrocytes. Here, we show that directed αBc overexpression in astrocytes improves motor performance in rotarod and balance beam tests and improves cognitive function in the BACHD mice. Improvement in behavioral deficits correlated with mitigation of neuropathological features commonly observed in HD. Interestingly, astrocytic αBc overexpression was neuroprotective against neuronal cell loss in BACHD brains, suggesting αBc might be acting in a non-cell-autonomous manner. At the protein level, αBc decreased the level of soluble mhtt and decreased the size of mhtt inclusions in BACHD brain. Our results support a model in which elevating astrocytic αBc confers neuroprotection through a potential non-cell-autonomous pathway that modulates mhtt aggregation and protein levels.


Subject(s)
Astrocytes/pathology , Brain/pathology , Disease Models, Animal , Huntington Disease/physiopathology , Neurons/pathology , alpha-Crystallin B Chain/metabolism , Animals , Astrocytes/metabolism , Behavior, Animal , Brain/metabolism , Humans , Huntingtin Protein/physiology , Mice , Mice, Transgenic , Neurons/metabolism , Phenotype
8.
J Biol Chem ; 288(51): 36554-66, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24189070

ABSTRACT

Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.


Subject(s)
Brain/metabolism , Gene Deletion , Gene Knockout Techniques , Kynurenine 3-Monooxygenase/genetics , Kynurenine/metabolism , Animals , Kynurenine/analogs & derivatives , Kynurenine/blood , Kynurenine 3-Monooxygenase/metabolism , Liver/metabolism , Mice , Mice, Knockout , Organ Specificity , Tryptophan/metabolism
9.
Eur J Neurosci ; 37(3): 429-40, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23167744

ABSTRACT

Cannabinoid receptor 1 (CB(1) receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB(1) expression in the basal ganglia of patients with Huntington's disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB(1) signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB(1) downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi-quantitative immunohistochemistry, we confirmed previous studies showing that CB(1) expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB(1) is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)-expressing interneurons while remaining unchanged in parvalbumin- and calretinin-expressing interneurons. CB(1) downregulation in striatal NPY/nNOS-expressing interneurons occurs in R6/2 mice, Hdh(Q150/Q150) mice and the caudate nucleus of patients with HD. In R6/2 mice, CB(1) downregulation in NPY/nNOS-expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro-survival signaling molecule cAMP response element-binding protein in NPY/nNOS-expressing interneurons. Loss of CB(1) signaling in NPY/nNOS-expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD.


Subject(s)
Basal Ganglia/metabolism , Down-Regulation , Huntington Disease/metabolism , Interneurons/metabolism , Neuropeptide Y/metabolism , Receptor, Cannabinoid, CB1/metabolism , Adult , Aged , Animals , Basal Ganglia/cytology , Calbindin 2 , Cannabinoid Receptor Agonists/pharmacology , Case-Control Studies , Cyclic AMP/metabolism , Disease Models, Animal , Female , Gene Expression , Humans , Huntingtin Protein , Interneurons/classification , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nerve Tissue Proteins/genetics , Neuropeptide Y/genetics , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nuclear Proteins/genetics , Parvalbumins/genetics , Parvalbumins/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/genetics , S100 Calcium Binding Protein G/genetics , S100 Calcium Binding Protein G/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism
10.
J Neurosci ; 32(50): 18259-68, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23238740

ABSTRACT

Peripheral immune cells and brain microglia exhibit an activated phenotype in premanifest Huntington's disease (HD) patients that persists chronically and correlates with clinical measures of neurodegeneration. However, whether activation of the immune system contributes to neurodegeneration in HD, or is a consequence thereof, remains unclear. Signaling through cannabinoid receptor 2 (CB(2)) dampens immune activation. Here, we show that the genetic deletion of CB(2) receptors in a slowly progressing HD mouse model accelerates the onset of motor deficits and increases their severity. Treatment of mice with a CB(2) receptor agonist extends life span and suppresses motor deficits, synapse loss, and CNS inflammation, while a peripherally restricted CB(2) receptor antagonist blocks these effects. CB(2) receptors regulate blood interleukin-6 (IL-6) levels, and IL-6 neutralizing antibodies partially rescue motor deficits and weight loss in HD mice. These findings support a causal link between CB(2) receptor signaling in peripheral immune cells and the onset and severity of neurodegeneration in HD, and they provide a novel therapeutic approach to treat HD.


Subject(s)
Huntington Disease/immunology , Huntington Disease/metabolism , Leukocytes/metabolism , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction/physiology , Animals , Brain/immunology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Huntington Disease/pathology , Interleukin-6/immunology , Interleukin-6/metabolism , Leukocytes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptor, Cannabinoid, CB2/immunology , Reverse Transcriptase Polymerase Chain Reaction
11.
J Clin Invest ; 122(12): 4737-47, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23160193

ABSTRACT

In Huntington disease (HD), immune cells are activated before symptoms arise; however, it is unclear how the expression of mutant huntingtin (htt) compromises the normal functions of immune cells. Here we report that primary microglia from early postnatal HD mice were profoundly impaired in their migration to chemotactic stimuli, and expression of a mutant htt fragment in microglial cell lines was sufficient to reproduce these deficits. Microglia expressing mutant htt had a retarded response to a laser-induced brain injury in vivo. Leukocyte recruitment was defective upon induction of peritonitis in HD mice at early disease stages and was normalized upon genetic deletion of mutant htt in immune cells. Migration was also strongly impaired in peripheral immune cells from pre-manifest human HD patients. Defective actin remodeling in immune cells expressing mutant htt likely contributed to their migration deficit. Our results suggest that these functional changes may contribute to immune dysfunction and neurodegeneration in HD, and may have implications for other polyglutamine expansion diseases in which mutant proteins are ubiquitously expressed.


Subject(s)
Chemotaxis , Huntington Disease/genetics , Microglia/physiology , Myeloid Cells/physiology , Nerve Tissue Proteins/genetics , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Adenosine Triphosphate/physiology , Animals , Cell Surface Extensions/metabolism , Cells, Cultured , Complement C5a/physiology , Humans , Huntingtin Protein , Huntington Disease/immunology , Huntington Disease/pathology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/cytology , Monocytes/physiology , Mutation , Myeloid Cells/cytology , Nerve Tissue Proteins/metabolism , Peritoneum/pathology , Thioglycolates/pharmacology , Time-Lapse Imaging
12.
J Huntingtons Dis ; 1(1): 107-18, 2012.
Article in English | MEDLINE | ID: mdl-23097680

ABSTRACT

Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, perhaps by contributing to synapse elimination or inflammatory signaling. We tested this hypothesis in the R6/2 mouse model of HD by crossing mice deficient in complement component 3 (C3), a crucial complement protein found at increased levels in HD brains, to R6/2 mice and monitoring behavioral and neuropathological disease progression. We found no alterations in multiple behavioral assays, weight or survival in R6/2 mice lacking C3. We also quantified the expression of several complement cascade genes in R6/2 brains and found that the large scale upregulation of complement genes observed in HD brains is not mirrored in R6/2 brains. These data show that C3 deficiency does not alter disease progression in the R6/2 mouse model of HD.


Subject(s)
Complement C3/genetics , Complement C3/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Disease Progression , Female , Gene Expression/genetics , Humans , Male , Mice , Mice, Transgenic
13.
J Neurosci ; 32(32): 11109-19, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22875942

ABSTRACT

Huntington's disease (HD) is a devastating neurodegenerative disorder with no disease-modifying treatments available. The disease is caused by expansion of a CAG trinucleotide repeat and manifests with progressive motor abnormalities, psychiatric symptoms, and cognitive decline. Expression of an expanded polyglutamine repeat within the Huntingtin (Htt) protein impacts numerous cellular processes, including protein folding and clearance. A hallmark of the disease is the progressive formation of inclusions that represent the culmination of a complex aggregation process. Methylene blue (MB), has been shown to modulate aggregation of amyloidogenic disease proteins. We investigated whether MB could impact mutant Htt-mediated aggregation and neurotoxicity. MB inhibited recombinant protein aggregation in vitro, even when added to preformed oligomers and fibrils. MB also decreased oligomer number and size and decreased accumulation of insoluble mutant Htt in cells. In functional assays, MB increased survival of primary cortical neurons transduced with mutant Htt, reduced neurodegeneration and aggregation in a Drosophila melanogaster model of HD, and reduced disease phenotypes in R6/2 HD modeled mice. Furthermore, MB treatment also promoted an increase in levels of BDNF RNA and protein in vivo. Thus, MB, which is well tolerated and used in humans, has therapeutic potential for HD.


Subject(s)
Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Huntington Disease/drug therapy , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Nerve Tissue Proteins/metabolism , Analysis of Variance , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Disease Models, Animal , Drosophila , Embryo, Mammalian , Excitatory Amino Acid Antagonists/toxicity , Humans , Huntingtin Protein , Huntington Disease/genetics , Kynurenic Acid/toxicity , Mice , Mice, Inbred C57BL , Microscopy, Atomic Force , Mutation/genetics , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Neurons/drug effects , Neurons/metabolism , Psychomotor Performance , Rats , Rotarod Performance Test , Transfection , Trinucleotide Repeat Expansion/genetics
14.
Nat Rev Neurosci ; 13(7): 465-77, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22678511

ABSTRACT

The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.


Subject(s)
Brain/pathology , Brain/physiology , Kynurenine/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Signal Transduction/physiology , Animals , Humans
15.
Fly (Austin) ; 6(2): 117-20, 2012.
Article in English | MEDLINE | ID: mdl-22634544

ABSTRACT

Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)-the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.


Subject(s)
Drosophila melanogaster/genetics , Huntington Disease/metabolism , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Animals , Disease Models, Animal , Drosophila Proteins/genetics , Eye Color/genetics , Eye Proteins/genetics , Female , Gene Knockdown Techniques , Huntington Disease/therapy , Kynurenic Acid/metabolism , Kynurenine/analogs & derivatives , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/genetics , Male , Tryptophan Oxygenase/genetics
16.
J Biol Chem ; 287(19): 16017-28, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22433867

ABSTRACT

Huntington disease is a genetic neurodegenerative disorder that arises from an expanded polyglutamine region in the N terminus of the HD gene product, huntingtin. Protein inclusions comprised of N-terminal fragments of mutant huntingtin are a characteristic feature of disease, though are likely to play a protective role rather than a causative one in neurodegeneration. Soluble oligomeric assemblies of huntingtin formed early in the aggregation process are candidate toxic species in HD. In the present study, we established an in vitro system to generate recombinant huntingtin in mammalian cells. Using both denaturing and native gel analysis, we have identified novel oligomeric forms of mammalian-derived expanded huntingtin exon-1 N-terminal fragment. These species are transient and were not previously detected using bacterially expressed exon-1 protein. Importantly, these species are recognized by 3B5H10, an antibody that recognizes a two-stranded hairpin conformation of expanded polyglutamine believed to be associated with a toxic form of huntingtin. Interestingly, comparable oligomeric species were not observed for expanded huntingtin shortstop, a 117-amino acid fragment of huntingtin shown previously in mammalian cell lines and transgenic mice, and here in primary cortical neurons, to be non-toxic. Further, we demonstrate that expanded huntingtin shortstop has a reduced ability to form amyloid-like fibrils characteristic of the aggregation pathway for toxic expanded polyglutamine proteins. Taken together, these data provide a possible candidate toxic species in HD. In addition, these studies demonstrate the fundamental differences in early aggregation events between mutant huntingtin exon-1 and shortstop proteins that may underlie the differences in toxicity.


Subject(s)
Exons/genetics , Nerve Tissue Proteins/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Blotting, Western , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , HEK293 Cells , Humans , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/metabolism , Mice , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Electron, Transmission , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Peptides/genetics , Protein Conformation , Protein Multimerization , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Time Factors
17.
Hum Mol Genet ; 21(11): 2432-49, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22357655

ABSTRACT

The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies.


Subject(s)
Yeasts/metabolism , alpha-Synuclein/genetics , Animals , Casein Kinase I/genetics , Casein Kinase I/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Humans , Mice , Mice, Transgenic , Neurons/metabolism , Phosphorylation , Protein Transport , alpha-Synuclein/metabolism
18.
J Neurosci ; 32(1): 133-42, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22219276

ABSTRACT

Huntington's disease (HD) is caused by an expanded polyglutamine tract in the protein huntingtin (htt). Although HD has historically been viewed as a brain-specific disease, htt is expressed ubiquitously, and recent studies indicate that mutant htt might cause changes to the immune system that could contribute to pathogenesis. Monocytes from HD patients and mouse models are hyperactive in response to stimulation, and increased levels of inflammatory cytokines and chemokines are found in pre-manifest patients that correlate with pathogenesis. In this study, wild-type (WT) bone marrow cells were transplanted into two lethally irradiated transgenic mouse models of HD that ubiquitously express full-length htt (YAC128 and BACHD mice). Bone marrow transplantation partially attenuated hypokinetic and motor deficits in HD mice. Increased levels of synapses in the cortex were found in HD mice that received bone marrow transplants. Importantly, serum levels of interleukin-6, interleukin-10, CXC chemokine ligand 1, and interferon-γ were significantly higher in HD than WT mice but were normalized in mice that received a bone marrow transplant. These results suggest that immune cell dysfunction might be an important modifier of pathogenesis in HD.


Subject(s)
Autoimmune Diseases of the Nervous System/therapy , Bone Marrow Cells/immunology , Bone Marrow Transplantation/methods , Huntington Disease/immunology , Huntington Disease/therapy , Immunosuppression Therapy/methods , Animals , Autoimmune Diseases of the Nervous System/physiopathology , Disease Models, Animal , Female , Humans , Huntington Disease/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
19.
J Huntingtons Dis ; 1(1): 119-32, 2012.
Article in English | MEDLINE | ID: mdl-24086178

ABSTRACT

The Huntington's disease (HD) mutation leads to a complex process of Huntingtin (Htt) aggregation into multimeric species that eventually form visible inclusions in cytoplasm, nuclei and neuronal processes. One hypothesis is that smaller, soluble forms of amyloid proteins confer toxic effects and contribute to early cell dysfunction. However, analysis of mutant Htt aggregation intermediates to identify conformers that may represent toxic forms of the protein and represent potential drug targets remains difficult. We performed a detailed analysis of aggregation conformers in multiple in vitro, cell and ex vivo models of HD. Conformation-specific antibodies were used to identify and characterize aggregation species, allowing assessment of multiple conformers present during the aggregation process. Using a series of assays together with these antibodies, several forms could be identified. Fibrillar oligomers, defined as having a ß-sheet rich conformation, are observed in vitro using recombinant protein and in protein extracts from cells in culture or mouse brain and shown to be globular, soluble and non-sedimentable structures. Compounds previously described to modulate visible inclusion body formation and reduce toxicity in HD models were also tested and consistently found to alter the formation of fibrillar oligomers. Interestingly, these compounds did not alter the rate of visible inclusion formation, indicating that fibrillar oligomers are not necessarily the rate limiting step of inclusion body formation. Taken together, we provide insights into the structure and formation of mutant Htt fibrillar oligomers that are modulated by small molecules with protective potential in HD models.


Subject(s)
Amyloid/chemistry , Amyloid/genetics , Huntington Disease/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Animals , Brain Chemistry , Cell Line, Tumor , Humans , Huntingtin Protein , Mice , Mice, Transgenic , Models, Biological , Mutation/genetics
20.
Nat Chem Biol ; 7(12): 925-34, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-22037470

ABSTRACT

Polyglutamine (polyQ) stretches exceeding a threshold length confer a toxic function to proteins that contain them and cause at least nine neurological disorders. The basis for this toxicity threshold is unclear. Although polyQ expansions render proteins prone to aggregate into inclusion bodies, this may be a neuronal coping response to more toxic forms of polyQ. The exact structure of these more toxic forms is unknown. Here we show that the monoclonal antibody 3B5H10 recognizes a species of polyQ protein in situ that strongly predicts neuronal death. The epitope selectively appears among some of the many low-molecular-weight conformational states assumed by expanded polyQ and disappears in higher-molecular-weight aggregated forms, such as inclusion bodies. These results suggest that protein monomers and possibly small oligomers containing expanded polyQ stretches can adopt a conformation that is recognized by 3B5H10 and is toxic or closely related to a toxic species.


Subject(s)
Neurodegenerative Diseases/pathology , Neurons/drug effects , Neurons/pathology , Peptides/chemistry , Peptides/toxicity , Antibodies, Monoclonal/immunology , Antibody Specificity , Cell Death/drug effects , Cells, Cultured , Epitopes/chemistry , Epitopes/immunology , Epitopes/toxicity , HEK293 Cells , Humans , Inclusion Bodies/chemistry , Molecular Weight , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Peptides/immunology , Structure-Activity Relationship , Trinucleotide Repeat Expansion
SELECTION OF CITATIONS
SEARCH DETAIL
...