Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900491

ABSTRACT

Philadelphia-positive (Ph+) leukemia is a type of blood cancer also known as acute lymphoblastic leukemia (ALL), affecting 20-30% of adults diagnosed worldwide and having an engraved prognosis as compared to other types of leukemia. The current treatment regimens mainly rely on tyrosine kinase inhibitors (TKIs) and bone marrow transplants. To date, several generations of TKIs have been developed due to associated resistance and frequent relapse, with cardiovascular system anomalies being the most devastating complication. Nanotechnology has the potential to address these limitations by the targeted drug delivery and controlled release of TKIs. This study focused on the titanium dioxide (TiO2) and graphene oxide (GO) nanocomposite employment to load nilotinib and ponatinib TKIs for therapy of Ph+ leukemia cell line (K562) and Ba/F3 cells engineered to express BCR-ABL oncogene. Meanwhile, after treatment, the oncogene expressing fibroblast cells (Rat-1 P185) were evaluated for their colony formation ability under 3D conditions. To validate the nanocomposite formation, the TiO2-GO nanocomposites were characterized by scanning electron microscope, DLS, XRD, FTIR, zeta potential, EDX, and element mapping. The TKI-loaded TiO2-GO was not inferior to the free drugs after evaluating their effects by a cell viability assay (XTT), apoptosis induction, and colony formation inhibition. The cell signaling pathways of the mammalian target of rapamycin (mTOR), signal transducers and activators of transcription 5 (STAT5), and extracellular signal-regulated kinase (Erk1/2) were also investigated by Western blot. These signaling pathways were significantly downregulated in the TKI-loaded TiO2-GO-treated groups. Based on the findings above, we can conclude that TiO2-GO exhibited excellent drug delivery potential that can be used for Ph+ leukemia therapy in the future, subject to further investigations.

2.
Adv Sci (Weinh) ; 8(22): e2102540, 2021 11.
Article in English | MEDLINE | ID: mdl-34553500

ABSTRACT

Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.

3.
ACS Appl Mater Interfaces ; 13(23): 27400-27410, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34081850

ABSTRACT

Emulsion template-guided strategy has been used to produce porous architectures with exquisite structure, tailored morphology, and exclusive features for ubiquitous applications. Notwithstanding, the practical water remediation is often marred by their transport-limited behavior and fragility. To circumvent these conundrums, we prepared hierarchically porous poly(acrylic acid)-alumina nanocomposite beads by solidifying the droplets of emulsions jointly stabilized by the organic surfactants and alumina nanoparticles. By virtue of their positive charge, the alumina nanoparticles got entrapped within the poly(acrylic acid) scaffolds that excluded the risk of secondary contamination typically observed with conventional nanocomposites. Being amenable to surface modification, the carboxyl moieties of the beaded polymer were further exploited to covalently tether branched polyethylenimine throughout the exterior and interior surface of the porous matrix via a grafting-to approach. The macropores expedite an active fluid flow and easier adsorbate transport throughout the functionalized nanocomposites whose overall higher density of positive charge over a certain pH range electrostatically attracts and effectively adsorbs the negatively charged Cr(VI) complexes and anionic congo red ions/molecules from water. This proof-of-concept synthetic approach and postsynthetic modification offer an improved mechanical robustness to these macrosized multifunctional nanocomposite beads for their easier processing, thereby paving the way for the point-of-use water purification technology development.

4.
Langmuir ; 35(40): 13165-13173, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31525878

ABSTRACT

Emulsion templating has emerged as a cutting-edge technique to prepare a wide array of porous polymer-metal nanocomposites with intriguing properties. Using this strategy, we set out to prepare novel hierarchically porous poly(vinylsulfonic acid) beads, which were then used for the in situ production of silver nanoparticles to obtain poly(vinylsulfonic acid)-Ag nanocomposite beads via a facile approach. Owing to their multimodal macro-meso-/microporosity that accounts for their decent BET surface areas (170.75-197.74 m2/g) and easier mass diffusion and transport together with the synergistic benefits of very small silver nanoparticles (down to ∼3.77 nm), the nanocomposite beads are found effective to remove Hg(II) and RhB and to kill Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The adsorption capacities (167.98-190.58 mg/g) of these materials for Hg(II) surpass some recently reported benchmark materials. The larger size (1.56 ± 0.20-1.50 ± 0.14 mm) of the beads that helps favor the handling and subsequent recovery for recycling is also very useful to further broaden the horizons of these materials to develop decentralized water treatment systems.

5.
Langmuir ; 35(27): 8996-9003, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31189312

ABSTRACT

Tainting of waterbodies with noxious industrial waste is the gravest environmental concern of the day that continues to wreak inevitable havoc on human health. To cleanup these hard-to-remove life-threatening water contaminants, we have prepared hierarchically porous poly(acrylic acid) beads by emulsion templating. These emulsion-templated macroporous polymer beads not only mediate the synthesis of Fe3O4 nanoparticles inside their porous network using a coprecipitation approach but, in turn, create diverse anchoring sites to immobilize an additional poly(acrylic acid) active layer onto the nanocomposite beads. These post-synthetically modified nanocomposite beads with macropores and abundant acrylic acid moieties offer the ready mass transfer and fair advantage of relatively higher overall negative charge to efficiently adsorb lead [Pb(II)] and crystal violet with impressive performance-even superior to many of the materials explored in this regard so far. Furthermore, the strong entanglement of nanoparticles in the porous polymeric scaffolds tackles the curb of trade-off between all-round effective remediation and secondary pollution and the millimeter size eases their processing and recovery during the adsorption tests, thereby making these materials practically worthwhile.

6.
RSC Adv ; 8(52): 29628-29636, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-35547285

ABSTRACT

Nano/microscale TiO2 materials and their composites have reached the pinnacle of their photocatalytic performances to destroy persistent organic pollutants and waterborne microorganisms, but their practical applications are limited by the drawbacks associated with their stability, leaching, processing and separation. To overcome these shortcomings, we have prepared hierarchically porous nanostructured TiO2 macrobeads via an exotemplating or nanocasting strategy by infiltrating the TiO2 sol into the emulsion-templated porous polyacrylamide scaffold followed by its gelation, drying and calcination. The nanoscale TiO2 building units tailor the shape of the porous polymeric network after calcination thereby retaining the macroscale morphology of polymer beads after template removal. A novel combination of the hierarchical macroporosity, orderly crystalline anatase nature, nanoscale feature and good surface area revealed by the relevant characterization tools makes these TiO2 scaffolds particularly effective for superior degradation of methylene blue with the enhanced rate constant and efficient disinfection of E. coli and S. aureus under UV light. The macrosize and mechanical stability of these purely TiO2 beaded architectures have several potential advantages over conventional TiO2 nanocomposites and slurry systems to address the inherent bottlenecks of secondary contamination, difficult operation and energy-intensive post-recovery processes that are indeed deemed to be the barriers to develop practically useful water treatment technologies.

7.
ACS Appl Mater Interfaces ; 9(28): 24190-24197, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28644011

ABSTRACT

Water, the driver of nature, has always been polluted by the blind hurling of highly toxic contaminants, but human-friendly science has continuously been presenting better avenues to help solve these challenging issues. In this connection, the present study introduces novel nanocomposites composed of emulsion-templated hierarchically porous poly(1-vinylimidazole) beads loaded with the silver nanoparticles generated via an in situ approach. These nanocomposites have been thoroughly characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller, and field emission scanning electron microscopy. The appropriate surface chemistry, good thermal stability, swelling behavior, porosity, and nanodimensions contributed to achieve very good performance in water treatment. Owing to their easier handling and separation, these novel nanocomposites are highly efficient to remove arsenic and eriochrome black T with decent adsorption capacities in addition to the inactivation and killing of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...