Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(3): 2220-2235, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284169

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.


Subject(s)
Asthma , Thymic Stromal Lymphopoietin , Animals , Rats , Asthma/drug therapy , Bicycling , Cytokines/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism
2.
J Med Chem ; 65(21): 14337-14347, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36204777

ABSTRACT

Bicycle toxin conjugates (BTCs) are a promising new class of molecules for targeted delivery of toxin payloads into tumors. Herein we describe the discovery of BT8009, a Nectin-4 targeting BTC currently under clinical evaluation. Nectin-4 is overexpressed in multiple tumor types and is a clinically validated target for selective delivery of cytotoxic payloads. A Nectin-4 targeting bicyclic peptide was identified by phage display, which showed highly selective binding for Nectin-4 but suffered from low plasma stability and poor physicochemical properties. Multiparameter chemical optimization involving introduction of non-natural amino acids resulted in a lead Bicycle that demonstrated high affinity for Nectin-4, good stability in biological matrices, and a much-improved physicochemical profile. The optimized Bicycle was conjugated to the cytotoxin Monomethyl auristatin E via a cleavable linker to give the targeted drug conjugate BT8009, which demonstrates potent anticancer activity in in vivo rodent models.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunotoxins , Neoplasms , Humans , Nectins , Bicycling , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Adhesion Molecules , Cell Line, Tumor
3.
Mol Cancer Ther ; 21(12): 1747-1756, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36112771

ABSTRACT

Multiple tumor types overexpress Nectin-4 and the antibody-drug conjugate (ADC), enfortumab vedotin (EV) shows striking efficacy in clinical trials for metastatic urothelial cancer, which expresses high levels of Nectin-4, validating Nectin-4 as a clinical target for toxin delivery in this indication. Despite excellent data in urothelial cancer, little efficacy data are reported for EV in other Nectin-4 expressing tumors and EV therapy can produce significant toxicities in many patients, frequently leading to discontinuation of treatment. Thus, additional approaches to this target with the potential to extend utility and reduce toxicity are warranted. We describe the preclinical development of BT8009, a "Bicycle Toxin Conjugate" (BTC) consisting of a Nectin-4-binding bicyclic peptide, a cleavable linker system and the cell penetrant toxin mono-methylauristatin E (MMAE). BT8009 shows significant antitumor activity in preclinical tumor models, across a variety of cancer indications and is well tolerated in preclinical safety studies. In several models, it shows superior or equivalent antitumor activity to an EV analog. As a small hydrophilic peptide-based drug BT8009 rapidly diffuses from the systemic circulation, through tissues to penetrate the tumor and target tumor cells. It is renally eliminated from the circulation, with a half-life of 1-2 hours in rat and non-human primate. These physical and PK characteristics differentiate BT8009 from ADCs and may provide benefit in terms of tumor penetration and reduced systemic exposure. BT8009 is currently in a Phase 1/2 multicenter clinical trial across the US, Canada, and Europe, enrolling patients with advanced solid tumors associated with Nectin-4 expression.


Subject(s)
Carcinoma, Transitional Cell , Immunoconjugates , Immunotoxins , Rats , Animals , Nectins , Bicycling , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Adhesion Molecules/metabolism , Carcinoma, Transitional Cell/drug therapy
4.
J Med Chem ; 65(14): 9858-9872, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35819182

ABSTRACT

CD137 (4-1BB) is a co-stimulatory receptor on immune cells and Nectin-4 is a cell adhesion molecule that is overexpressed in multiple tumor types. Using a series of poly(ethylene glycol) (PEG)-based linkers, synthetic bicyclic peptides targeting CD137 were conjugated to Bicycles targeting Nectin-4. The resulting bispecific molecules were potent CD137 agonists that require the presence of both Nectin-4-expressing tumor cells and CD137-expressing immune cells for activity. A multipronged approach was taken to optimize these Bicycle tumor-targeted immune cell agonists by exploring the impact of chemical configuration, binding affinity, and pharmacokinetics on CD137 agonism and antitumor activity. This effort resulted in the discovery of BT7480, which elicited robust CD137 agonism and maximum antitumor activity in syngeneic mouse models. A tumor-targeted approach to CD137 agonism using low-molecular-weight, short-acting molecules with high tumor penetration is a yet unexplored path in the clinic, where emerging data suggest that persistent target engagement, characteristic of biologics, may lead to suboptimal immune response.


Subject(s)
Neoplasms , Animals , Cell Adhesion Molecules , Mice , Nectins , Neoplasms/drug therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
5.
Bioconjug Chem ; 33(8): 1441-1445, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35894801

ABSTRACT

Bicycles are constrained bicyclic peptides formed through reaction of three cysteine residues within a linear sequence with a trivalent, symmetrical small molecule scaffold. Bicycles with high binding affinities to therapeutically important targets can be discovered using screening technologies such as phage display. Increasing the chemical diversity of Bicycles should improve the probability of finding hits to new targets and can be achieved by expanding the toolbox of Bicycle forming chemistries. Gold(III) S-arylation has recently been described as a method for the efficient bioconjugation of cysteine residues under conditions compatible with phage display. Herein, we explore the scope and generality of this methodology for Bicycle construction through the synthesis and evaluation of four novel tris-Gold complexes. These new scaffolds were systematically reacted with a variety of peptide sequences, varying in amino acid loop lengths. All four scaffolds proved to be capable and selective reactive partners for each peptide sequence and afforded the desired Bicycle products in 13-48% isolated yield. This work exemplifies Gold-mediated arylation as a general approach for construction of novel, highly constrained Bicycles.


Subject(s)
Cysteine , Gold , Amino Acid Sequence , Bicycling , Cysteine/chemistry , Gold/chemistry , Peptide Library , Peptides/chemistry
6.
Mol Cancer Ther ; 21(6): 903-913, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35312779

ABSTRACT

Immunoconjugates targeting cell-surface antigens have demonstrated clinical activity to enable regulatory approval in several solid and hematologic malignancies. We hypothesize that a rigorous and comprehensive surfaceome profiling approach to identify osteosarcoma-specific cell-surface antigens can similarly enable development of effective therapeutics in this disease. Herein, we describe an integrated proteomic and transcriptomic surfaceome profiling approach to identify cell-surface proteins that are highly expressed in osteosarcoma but minimally expressed on normal tissues. Using this approach, we identified targets that are highly expressed in osteosarcoma. Three targets, MT1-MMP, CD276, and MRC2, were validated as overexpressed in osteosarcoma. Furthermore, we tested BT1769, an MT1-MMP-targeted Bicycle toxin conjugate, in osteosarcoma patient-derived xenograft models. The results showed that BT1769 had encouraging antitumor activity, high affinity for its target, and a favorable pharmacokinetic profile. This confirms the hypothesis that our approach identifies novel targets with significant therapeutic potential in osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Antigens, Surface , B7 Antigens , Bone Neoplasms/metabolism , Cell Line, Tumor , Humans , Matrix Metalloproteinase 14 , Osteosarcoma/metabolism , Proteomics/methods
7.
J Immunother Cancer ; 9(1)2021 01.
Article in English | MEDLINE | ID: mdl-33500260

ABSTRACT

BACKGROUND: In contrast to immune checkpoint inhibitors, the use of antibodies as agonists of immune costimulatory receptors as cancer therapeutics has largely failed. We sought to address this problem using a new class of modular synthetic drugs, termed tumor-targeted immune cell agonists (TICAs), based on constrained bicyclic peptides (Bicycles). METHODS: Phage libraries displaying Bicycles were panned for binders against tumor necrosis factor (TNF) superfamily receptors CD137 and OX40, and tumor antigens EphA2, Nectin-4 and programmed death ligand 1. The CD137 and OX40 Bicycles were chemically conjugated to tumor antigen Bicycles with different linkers and stoichiometric ratios of binders to obtain a library of low molecular weight TICAs (MW <8 kDa). The TICAs were evaluated in a suite of in vitro and in vivo assays to characterize their pharmacology and mechanism of action. RESULTS: Linking Bicycles against costimulatory receptors (e.g., CD137) to Bicycles against tumor antigens (e.g., EphA2) created potent agonists that activated the receptors selectively in the presence of tumor cells expressing these antigens. An EphA2/CD137 TICA (BCY12491) efficiently costimulated human peripheral blood mononuclear cells in vitro in the presence of EphA2 expressing tumor cell lines as measured by the increased secretion of interferon γ and interleukin-2. Treatment of C57/Bl6 mice transgenic for the human CD137 extracellular domain (huCD137) bearing EphA2-expressing MC38 tumors with BCY12491 resulted in the infiltration of CD8+ T cells, elimination of tumors and generation of immunological memory. BCY12491 was cleared quickly from the circulation (plasma t1/2 in mice of 1-2 hr), yet intermittent dosing proved effective. CONCLUSION: Tumor target-dependent CD137 agonism using a novel chemical approach (TICAs) afforded elimination of tumors with only intermittent dosing suggesting potential for a wide therapeutic index in humans. This work unlocks a new path to effective cancer immunotherapy via agonism of TNF superfamily receptors.


Subject(s)
Neoplasms/drug therapy , Peptides, Cyclic/administration & dosage , Receptor, EphA2/agonists , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , A549 Cells , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Female , HT29 Cells , Humans , Jurkat Cells , Mice , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , PC-3 Cells , Peptide Library , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Receptors, OX40/metabolism , Xenograft Model Antitumor Assays
8.
Mol Cancer Ther ; 19(7): 1385-1394, 2020 07.
Article in English | MEDLINE | ID: mdl-32398269

ABSTRACT

The EphA2 receptor is found at high levels in tumors and low levels in normal tissue and high EphA2 expression in biopsies is a predictor of poor outcome in patients. Drug discovery groups have therefore sought to develop EphA2-based therapies using small molecule, peptide, and nanoparticle-based approaches (1-3). However, until now only EphA2-targeting antibody-drug conjugates (ADC) have entered clinical development. For example, MEDI-547 is an EphA2-targeting ADC that displayed encouraging antitumor activity in preclinical models and progressed to phase I clinical testing in man. Here we describe the development of BT5528, a bicyclic peptide ("Bicycle") conjugated to the auristatin derivative maleimidocaproyl-monomethyl auristatin E to generate the Bicycle toxin conjugate BT5528. The report compares and contrasts the Pharmacokinetics (PK) characteristics of antibody and Bicycle-based targeting systems and discusses how the PK and payload characteristics of different delivery systems impact the efficacy-toxicity trade off which is key to the development of successful cancer therapies. We show that BT5528 gives rise to rapid update into tumors and fast renal elimination followed by persistent toxin levels in tumors without prolonged exposure of parent drug in the vasculature. This fast in, fast out kinetics gave rise to more favorable toxicology findings in rats and monkeys than were observed with MEDI-547 in preclinical and clinical studies.Graphical Abstract: http://mct.aacrjournals.org/content/molcanther/19/7/1385/F1.large.jpg.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Fibrosarcoma/drug therapy , Oligopeptides/chemistry , Peptides, Cyclic/pharmacology , Receptor, EphA2/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Apoptosis , Cell Proliferation , Female , Fibrosarcoma/metabolism , Fibrosarcoma/pathology , Humans , Immunotoxins/pharmacokinetics , Immunotoxins/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Oligopeptides/administration & dosage , Peptides, Cyclic/pharmacokinetics , Receptor, EphA2/genetics , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
J Med Chem ; 63(8): 4107-4116, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32202781

ABSTRACT

Bicycles are constrained bicyclic peptides that represent a promising binding modality for use in targeted drug conjugates. A phage display screen against EphA2, a receptor tyrosine kinase highly expressed in a number of solid tumors, identified a number of Bicycle families with low nanomolar affinity. A Bicycle toxin conjugate (BTC) was generated by derivatization of one of these Bicycles with the potent cytotoxin DM1 via a cleavable linker. This BTC demonstrated potent antitumor activity in vivo but was poorly tolerated, which was hypothesized to be the result of undesired liver uptake caused by poor physicochemical properties. Chemical optimization of a second Bicycle, guided by structural biology, provided a high affinity, metabolically stable Bicycle with improved physicochemical properties. A BTC incorporating this Bicycle also demonstrated potent antitumor activity and was very well tolerated when compared to the initial BTC. Phage display selection followed by chemical optimization of Bicycles can deliver potent drug conjugates with favorable pharmaceutical properties.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cytotoxins/administration & dosage , Drug Delivery Systems/methods , Ephrin-A2/antagonists & inhibitors , Amino Acid Sequence , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Cytotoxins/chemistry , Cytotoxins/metabolism , Ephrin-A2/metabolism , Female , Humans , Liver/diagnostic imaging , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, EphA2 , Xenograft Model Antitumor Assays/methods
10.
Cancer Res ; 79(4): 841-852, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30606721

ABSTRACT

Molecular imaging of cancers using probes specific for tumor-associated target proteins offers a powerful solution for providing information regarding selection of targeted therapy, patient stratification, and response to therapy. Here we demonstrate the power of bicyclic peptides as targeting probes, exemplified with the tumor-overexpressed matrix metalloproteinase MT1-MMP as a target. A bicyclic peptide with subnanomolar affinity towards MT1-MMP was identified, and its radioconjugate showed selective tumor uptake in an HT1080 xenograft mouse model. Proteolytic stabilization of the peptide by chemical modification significantly enhanced the in vivo tumor signal [from 2.5%ID/g to 12%ID/g at 1 hour post injection (p.i.)]. Studies using mouse xenograft models with different cell lines show a robust correlation between tumor signals and in vivo MT1-MMP expression levels. Fatty acid modification of the bicyclic peptide extended its circulating half-life, resulting in increased tumor signals (36%ID/g at 6 hours p.i.). Comparative work with an equipotent radiolabeled MT1-MMP targeting antibody demonstrated starkly differential biodistribution and tumor accumulation properties, with the tumor signal slowly increasing to 6.2%ID/g within 48 hours. The rapid tumor penetration characteristics of bicyclic peptides, coupled with high potency and chemical versatility, thus offer high-contrast imaging probes for clinical diagnostics with compelling additional potential in targeted therapy.Significance: This work demonstrates the potential of bicyclic peptides as a platform for the development of high-contrast imaging probes for potential use in clinical cancer diagnostics and molecularly targeted therapeutics.


Subject(s)
Antibodies, Monoclonal/pharmacology , Enzyme Inhibitors/pharmacology , Fibrosarcoma/drug therapy , Fibrosarcoma/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Matrix Metalloproteinase 14/chemistry , Peptides, Cyclic/pharmacology , Animals , Antibodies, Monoclonal/pharmacokinetics , Apoptosis , Cell Proliferation , Enzyme Inhibitors/pharmacokinetics , Fibrosarcoma/diagnostic imaging , Fibrosarcoma/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Image Processing, Computer-Assisted/methods , Male , Matrix Metalloproteinase 14/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Peptides, Cyclic/pharmacokinetics , Positron-Emission Tomography , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Anal Chem ; 89(10): 5319-5324, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28430416

ABSTRACT

Use of a heterobifunctional photoactivatable cross-linker, sulfo-SDA (diazirine), has yielded high-density data that facilitated structure modeling of individual proteins. We expand the photoactivatable chemistry toolbox here with a second reagent, sulfo-SBP (benzophenone). This further increases the density of photo-cross-linking to a factor of 20× over conventional cross-linking. Importantly, the two different photoactivatable groups display orthogonal directionality, enabling access to different protein regions, unreachable with a single cross-linker.

12.
Methods Appl Fluoresc ; 3(4): 045002, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-29148510

ABSTRACT

A well-documented obstacle in the synthesis of functionalized rhodamine dyes is the generation of regioisomers which are difficult to separate. These isomers occur due to the use of unsymmetrical anhydride reagents, which possess two potential points of reactivity where condensation with meta-aminophenols can take place. In this report we describe a method which eliminates this problem by using phthalaldehydic acids as anhydride replacements. These reagents provide only one point of reactivity for the aminophenol, thus allowing direct access to single isomer tetramethylrhodamines and avoiding isomer generation altogether. A range of functionalities are shown to be tolerated at the 5- and 6-position of the dye compounds which are prepared in up to gram quantities using our method. The scope of the method is further demonstrated by the preparation of additional rhodamine family members Rhodamine B and X-Rhodamine.

13.
Angew Chem Int Ed Engl ; 53(17): 4322-6, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24692345

ABSTRACT

Stabilization of protein-protein interactions by small molecules is a concept with few examples reported to date. Herein we describe the identification and X-ray co-crystal structure determination of IBE-667, an ICAM-1 binding enhancer for LFA-1. IBE-667 was designed based on the SAR information obtained from an on-bead screen of tagged one-bead one-compound combinatorial libraries by confocal nanoscanning and bead picking (CONA). Cellular assays demonstrate the activity of IBE-667 in promoting the binding of LFA-1 on activated immune cells to ICAM-1.


Subject(s)
Azepines/chemistry , Azepines/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Protein Binding/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Combinatorial Chemistry Techniques , Crystallography, X-Ray , High-Throughput Screening Assays , Humans , Intercellular Adhesion Molecule-1/chemistry , Lymphocyte Function-Associated Antigen-1/chemistry
14.
J Chem Biol ; 5(2): 63-79, 2012 Apr.
Article in English | MEDLINE | ID: mdl-23284589

ABSTRACT

UNLABELLED: An array of chemical modifications have recently emerged, designed to improve the stability of natural peptides that inherently suffer from short in vivo half-lives, thereby preventing their use as therapeutics. The resultant peptidomimetics resemble native peptides; however, they contain synthetic elements (e.g. non-coded amino acids) which confer improved biophysical properties. An elegant approach towards the identification of peptidomimetics is through screening of large combinatorial chemical libraries incorporating both coded and non-coded amino acids (e.g. ß amino acids). We apply here our recently developed Integrated Chemical Biophysics (ICB) platform, which combines microscale one-bead one-compound screening with fluorescence tagging of retrieved hit beads and subsequent affinity determination of hit compounds in homogenous solution, to the task of identifying novel mixed α, ß peptidomimetic binders for the adaptor protein SLAM-associated protein (SAP), which acts as an intracellular adapter that transduces T and NK cell activation. An enhancement to the ICB process is introduced which enables ranking hit compounds from single-point measurements even if the library compound is <95% pure and without HPLC purification of single-bead-derived substance. Finally, a novel computational protocol enabling binding mode and SAR rationalisation of hit compounds is also described which we now utilise to inform future library design. Application of the full ICB process has allowed identification of a highly interesting motif, Ac-ß(3)-Pro-α-pTyr, as a mimic for the -1 and -2 positions of the natural binding motif and provides a promising starting point for further optimization towards higher-affinity SAP inhibitors with enhanced metabolic stability. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12154-011-0071-9) contains supplementary material, which is available to authorized users.

SELECTION OF CITATIONS
SEARCH DETAIL
...