Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 200: 112412, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32502861

ABSTRACT

Staphylococcus aureus (Sa) is a serious concern due to increasing resistance to antibiotics. The bacterial dihydrofolate reductase enzyme is effectively inhibited by trimethoprim, a compound with antibacterial activity. Previously, we reported a trimethoprim derivative containing an acryloyl linker and a dihydophthalazine moiety demonstrating increased potency against S. aureus. We have expanded this series and assessed in vitro enzyme inhibition (Ki) and whole cell growth inhibition properties (MIC). Modifications were focused at a chiral carbon within the phthalazine heterocycle, as well as simultaneous modification at positions on the dihydrophthalazine. MIC values increased from 0.0626-0.5 µg/mL into the 0.5-1 µg/mL range when the edge positions were modified with either methyl or methoxy groups. Changes at the chiral carbon affected Ki measurements but with little impact on MIC values. Our structural data revealed accommodation of predominantly the S-enantiomer of the inhibitors within the folate-binding pocket. Longer modifications at the chiral carbon, such as p-methylbenzyl, protrude from the pocket into solvent and result in poorer Ki values, as do modifications with greater torsional freedom, such as 1-ethylpropyl. The most efficacious Ki was 0.7 ± 0.3 nM, obtained with a cyclopropyl derivative containing dimethoxy modifications at the dihydrophthalazine edge. The co-crystal structure revealed an alternative placement of the phthalazine moiety into a shallow surface at the edge of the site that can accommodate either enantiomer of the inhibitor. The current design, therefore, highlights how to engineer specific placement of the inhibitor within this alternative pocket, which in turn maximizes the enzyme inhibitory properties of racemic mixtures.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , Staphylococcus aureus/enzymology , Tetrahydrofolate Dehydrogenase/chemistry , Binding Sites , Microbial Sensitivity Tests , Structure-Activity Relationship , Trimethoprim/analogs & derivatives , Trimethoprim/chemistry
2.
Bioorg Med Chem ; 23(1): 203-11, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25435253

ABSTRACT

The current Letter describes the synthesis and biological evaluation of dihydrophthalazine-appended 2,4-diaminopyrimidine (DAP) inhibitors (1) oxidized at the methylene bridge linking the DAP ring to the central aromatic ring and (2) modified at the central ring ether groups. Structures 4a-b incorporating an oxidized methylene bridge showed a decrease in activity, while slightly larger alkyl groups (CH2CH3 vs CH3) on the central ring oxygen atoms (R(2) and R(3)) had a minimal impact on the inhibition. Comparison of the potency data for previously reported RAB1 and BN-53 with the most potent of the new derivatives (19 b and 20a-b) showed similar values for inhibition of cellular growth and direct enzymatic inhibition (MICs 0.5-2 µg/mL). Compounds 29-34 with larger ester and ether groups containing substituted aromatic rings at R(3) exhibited slightly reduced activity (MICs 2-16 µg/mL). One explanation for this attenuated activity could be encroachment of the extended R(3) into the neighboring NADPH co-factor. These results indicate that modest additions to the central ring oxygen atoms are well tolerated, while larger modifications have the potential to act as dual-site inhibitors of dihydrofolate reductase (DHFR).


Subject(s)
Anti-Bacterial Agents/chemistry , Bacillus anthracis/enzymology , Folic Acid Antagonists/chemistry , Pyrimidines/chemistry , Anti-Bacterial Agents/pharmacology , Folic Acid Antagonists/pharmacology , Models, Molecular , Protein Binding , Pyrimidines/pharmacology , Structure-Activity Relationship
3.
Molecules ; 19(3): 3231-46, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24642909

ABSTRACT

Due to the innate ability of bacteria to develop resistance to available antibiotics, there is a critical need to develop new agents to treat more resilient strains. As a continuation of our research in this area, we have synthesized a series of racemic 2,4-diaminopyrimidine-based drug candidates, and evaluated them against Bacillus anthracis. The structures are comprised of a 2,4-diaminopyrimidine ring, a 3,4-dimethoxybenzyl ring, and an N-acryloyl-substituted 1,2-dihydrophthalazine ring. Various changes were made at the C1 stereocenter of the dihydrophthalazine moiety in the structure, and the biological activity was assessed by measurement of the MIC and K(i) values to identify the most potent drug candidate.


Subject(s)
Bacillus anthracis/drug effects , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Binding Sites , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Protein Binding , Tetrahydrofolate Dehydrogenase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...