Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(23): 9964-9972, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37266913

ABSTRACT

Wide bandgap semiconductors such as gallium oxide (Ga2O3) have attracted much attention for their use in next-generation high-power electronics. Although single-crystal Ga2O3 substrates can be routinely grown from melt along various orientations, the influence of such orientations has been seldom reported. Further, making rectifying p-n diodes from Ga2O3 has been difficult due to lack of p-type doping. In this study, we fabricated and optimized 2D/3D vertical diodes on ß-Ga2O3 by varying the following three factors: substrate planar orientation, choice of 2D material and metal contacts. The quality of our devices was validated using high-temperature dependent measurements, atomic-force microscopy (AFM) techniques and technology computer-aided design (TCAD) simulations. Our findings suggest that 2D/3D ß-Ga2O3 vertical heterojunctions are optimized by substrate planar orientation (-201), combined with 2D WS2 exfoliated layers and Ti contacts, and show record rectification ratios (>106) concurrently with ON-Current density (>103 A cm-2) for application in power rectifiers.


Subject(s)
Electronics , Semiconductors , Microscopy, Atomic Force
2.
ACS Appl Mater Interfaces ; 14(30): 35194-35204, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35877929

ABSTRACT

In this paper, self-powered ultraviolet (UV) photodetectors with high response performance based on Ga2O3/p-GaN were fabricated by metal-organic chemical vapor deposition (MOCVD). The effects of different crystal phases of Ga2O3 (including a, ε, ε/ß, and ß) grown on p-GaN films on the performance of photodetectors were systematically studied. Moreover, an in situ GaON dielectric layer improved the responsivity of Ga2O3/p-GaN photodetectors by 20 times. All Ga2O3/p-GaN photodetectors showed self-power capability without bias. An ultralow dark current of 3.08 pA and a Iphoto/Idark ratio of 4.1 × 103 (1.8 × 103) under 254 nm (365 nm) light were obtained for the ß-Ga2O3/p-GaN photodetector at 0 V bias. Furthermore, the ß-Ga2O3/p-GaN photodetector showed excellent sensitivity with a high responsivity of 3.8 A/W (0.83 A/W), a fast response speed of 66/36 ms (36/73 ms), and a high detectivity of 1.12 × 1014 Jones (2.44 × 1013 Jones) under 254 nm (365 nm) light at 0 V bias. The carrier transport mechanism of the Ga2O3/p-GaN self-powered photodetector was also analyzed through the device energy band diagram. This work provides critical information for the design and fabrication of high-performance self-powered Ga2O3/p-GaN UV photodetectors, opening the door to a variety of photonic systems and applications without an external power supply.

SELECTION OF CITATIONS
SEARCH DETAIL
...