Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 40(10): 1407-16, 1997 May 09.
Article in English | MEDLINE | ID: mdl-9154963

ABSTRACT

Raloxifene,[2-(4-hydroxyphenyl)-6-hydroxybenzo[b]thien-3-yl] [4-[2-(1-piperidinyl)ethoxy]phenyl]methanone hydrochloride (2), is representative of a class of compounds known as selective estrogen receptor modulators (SERMs) that possess estrogen agonist-like actions on bone tissues and serum lipids while displaying potent estrogen antagonist properties in the breast and uterus. As part of ongoing SAR studies with raloxifene, we found that replacement of the carbonyl group with oxygen ([6-hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxy]-2-(4-hydroxyphenyl)]b enzo[b]thiophene hydrochloride, 4c) resulted in a substantial (10-fold) increase in estrogen antagonist potency relative to raloxifene in an in vitro estrogen dependent cell proliferation assay (IC50 = 0.05 nM) in which human breast cancer cells (MCF-7) were utilized. In vivo, 4c potently inhibited the uterine proliferative response to exogenous estrogen in immature rats following both sc and oral dosing (ED50 of 0.006 and 0.25 mg/kg, respectively). In ovariectomized aged rats, 4c produced a significant maximal decrease (45%) in total cholesterol at 1.0 mg/kg (p.o.) and showed a protective effect on bone relative to controls with maximal efficacy at 1.0 mg/kg (p.o.). These data identify 4c as a novel SERM with greater potency to antagonize estrogen in uterine tissue and in human mammary cancer cells compared to raloxifene, tamoxifen or ICI-182,780.


Subject(s)
Estrogen Antagonists/chemical synthesis , Piperidines/chemical synthesis , Receptors, Estrogen/agonists , Animals , Breast Neoplasms/pathology , Cell Division/drug effects , Estrogen Antagonists/chemistry , Estrogen Antagonists/pharmacology , Female , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Piperidines/chemistry , Piperidines/pharmacology , Raloxifene Hydrochloride , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured
2.
J Med Chem ; 39(3): 736-48, 1996 Feb 02.
Article in English | MEDLINE | ID: mdl-8576917

ABSTRACT

Early structure-activity studies on racemic tryptophan ester and amide NK-1 antagonists 5-7 led to the discovery that the potency of the series could be markedly increased by moving the carbonyl function in these molecules to an off-chain position as in the 3-aryl-1,2-diacetamidopropane 9. Further medicinal chemistry incorporating this change resulted in the discovery of a novel series of highly potent aryl amino acid derived NK-1 antagonists of the R stereoisomeric series (IC50's = 100 pM to > 5 microM). Compounds in this series were shown to be competitive antagonists using an in vitro NK-1 smooth muscle assay, and this data correlated well with observed human NK-1 binding affinities. Two of these agents, (R)-25 and (R)-32, blocked intrathecal NK-1 agonist-driven [Ac-[Arg6,Sar9,Met(O2)11]- substance P 6-11 (Ac-Sar9)] nociceptive behavior in mice. Both compounds potently blocked the neurogenic dural inflammation following trigeminal ganglion stimulation in the guinea pig after intravenous administration. Further, upon oral administration in this model, (R)-32 was observed to be very potent (ID50 = 91 ng/kg) and have a long duration of action (> 8 h at 1 micrograms/kg). Compound (R)-32, designated LY303870, is currently under clinical development as an NK-1 antagonist with a long duration of action.


Subject(s)
Amides/pharmacology , Esters/pharmacology , Neurokinin-1 Receptor Antagonists , Amides/chemistry , Analgesics/chemistry , Analgesics/pharmacology , Animals , Electric Stimulation , Esters/chemistry , Guinea Pigs , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Rats , Species Specificity , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...