Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Curr Biol ; 34(8): 1762-1771.e3, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38521062

ABSTRACT

Amber preserves an exceptional record of tiny, soft-bodied organisms and chemical environmental signatures, elucidating the evolution of arthropod lineages and the diversity, ecology, and biogeochemistry of ancient ecosystems. However, globally, fossiliferous amber deposits are rare in the latest Cretaceous and surrounding the Cretaceous-Paleogene (K-Pg) mass extinction.1,2,3,4,5 This faunal gap limits our understanding of arthropod diversity and survival across the extinction boundary.2,6 Contrasting hypotheses propose that arthropods were either relatively unaffected by the K-Pg extinction or experienced a steady decline in diversity before the extinction event followed by rapid diversification in the Cenozoic.2,6 These hypotheses are primarily based on arthropod feeding traces on fossil leaves and time-calibrated molecular phylogenies, not direct observation of the fossil record.2,7 Here, we report a diverse amber assemblage from the Late Cretaceous (67.04 ± 0.16 Ma) of the Big Muddy Badlands, Canada. The new deposit fills a critical 16-million-year gap in the arthropod fossil record spanning the K-Pg mass extinction. Seven arthropod orders and at least 11 insect families have been recovered, making the Big Muddy amber deposit the most diverse arthropod assemblage near the K-Pg extinction. Amber chemistry and stable isotopes suggest the amber was produced by coniferous (Cupressaceae) trees in a subtropical swamp near remnants of the Western Interior Seaway. The unexpected abundance of ants from extant families and the virtual absence of arthropods from common, exclusively Cretaceous families suggests that Big Muddy amber may represent a yet unsampled Late Cretaceous environment and provides evidence of a faunal transition before the end of the Cretaceous.


Subject(s)
Amber , Arthropods , Extinction, Biological , Fossils , Fossils/anatomy & histology , Animals , Arthropods/anatomy & histology , Arthropods/classification , Biological Evolution , Biodiversity , Canada
2.
Sci Total Environ ; 780: 146555, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030322

ABSTRACT

Extensive development of horizontal drilling and hydraulic fracturing enhanced energy production but raised concerns about drinking-water quality in areas of shale-gas development. One particularly controversial case that has received significant public and scientific attention involves possible contamination of groundwater in the Trinity Aquifer in Parker County, Texas. Despite extensive work, the origin of natural gas in the Trinity Aquifer within this study area is an ongoing debate. Here, we present a comprehensive geochemical dataset collected across three sampling campaigns along with integration of previously published data. Data include major and trace ions, molecular gas compositions, compound-specific stable isotopes of hydrocarbons (δ13C-CH4, δ13C-C2H6, δ2H-CH4), dissolved inorganic carbon (δ13C-DIC), nitrogen (δ15N-N2), water (δ18O, δ2H, 3H), and noble gases (He, Ne, Ar), boron (δ11B) and strontium (87Sr/86Sr) isotopic compositions of water samples from 20 drinking-water wells from the Trinity Aquifer. The compendium of data confirms mixing between a deep, naturally occurring salt- (Cl >250 mg/L) and hydrocarbon-rich groundwater with a low-salinity, shallower, and younger groundwater. Hydrocarbon gases display strong evidence for sulfate reduction-paired oxidation, in some cases followed by secondary methanogenesis. A subset of drinking-water wells contains elevated levels of hydrocarbons and depleted atmospherically-derived gas tracers, which is consistent with the introduction of fugitive thermogenic gas. We suggest that gas originating from the intermediate-depth Strawn Group ("Strawn") is flowing along the annulus of a Barnett Shale gas well, and is subsequently entering the shallow aquifer system. This interpretation is supported by the expansion in the number of affected drinking-water wells during our study period and the persistence of hydrocarbon levels over time. Our data suggest post-genetic secondary water quality changes occur following fugitive gas contamination, including sulfate reduction paired with hydrocarbon oxidation and secondary methanogenesis. Importantly, no evidence for upward migration of brine or natural gas associated with the Barnett Shale was identified.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Methane/analysis , Natural Gas , Oil and Gas Fields , Texas , Water Pollutants, Chemical/analysis , Water Quality , Water Wells
3.
Sci Rep ; 9(1): 17916, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784622

ABSTRACT

Hadrosaurian dinosaurs were abundant in the Late Cretaceous of North America, but their habitats remain poorly understood. Cretaceous amber is also relatively abundant, yet it is seldom found in direct stratigraphic association with dinosaur remains. Here we describe an unusually large amber specimen attached to a Prosaurolophus jaw, which reveals details of the contemporaneous paleoforest and entomofauna. Fourier-transform Infrared spectroscopy and stable isotope composition (H and C) suggest the amber formed from resins exuded by cupressaceous conifers occupying a coastal plain. An aphid within the amber belongs to Cretamyzidae, a Cretaceous family suggested to bark-feed on conifers. Distinct tooth row impressions on the amber match the hadrosaur's alveolar bone ridges, providing some insight into the taphonomic processes that brought these remains together.


Subject(s)
Amber/chemistry , Biodiversity , Dinosaurs/anatomy & histology , Fossils , Animals , Aphids/pathogenicity , Dinosaurs/physiology , Jaw/anatomy & histology , Paleontology/methods , Tracheophyta/parasitology
4.
Environ Microbiol Rep ; 10(6): 663-672, 2018 12.
Article in English | MEDLINE | ID: mdl-30014579

ABSTRACT

Forest rings are 50-1600 m diameter circular structures found in boreal forests around the globe. They are believed to be chemically reducing chimney features, having an accumulation of reduced species in the middle of the ring and oxidation processes occurring at the ring's edges. It has been suggested that microorganisms could be responsible for charge transfer from the inside to the outside of the ring. To explore this, we focused on the changes in bacterial and archaeal communities in the ring edges of two forest rings, the 'Bean' and the 'Thorn North' ring, in proximity to each other in Ontario, Canada. The drier samples from the methane-sourced Bean ring were characterized by the abundance of bacteria from the classes Deltaproteobacteria and Gemmatimonadetes. Geobacter spp. and methanotrophs, such as Candidatus Methylomirabilis and Methylobacter, were highly abundant in these samples. The Thorn North ring, centred on an H2 S accumulation in groundwater, had wetter samples and its communities were dominated by the classes Alphaproteobacteria and Anaerolineae. This ring's microbial communities showed an overall higher microbial diversity supported by higher available free energy. For both rings, the species diversity was highest near the borders of the 20-30 m broad ring edges.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Electron Transport/physiology , Soil Microbiology , Taiga , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Biodiversity , Energy Metabolism , Hydrogen Sulfide/analysis , Hydrogen Sulfide/metabolism , Methane/analysis , Methane/metabolism , Ontario , RNA, Ribosomal, 16S/genetics , Soil/chemistry
5.
Proc Natl Acad Sci U S A ; 112(17): 5337-41, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25870269

ABSTRACT

The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition ((17)O/(16)O, (18)O/(16)O) of Proterozoic rocks to reconstruct the (18)O/(16)O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3-2.4 gigayears ago (Ga)] snowball Earth, δ(18)O = -43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low (18)O/(16)O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme (18)O depletion. For a Neoproterozoic (∼0.6-0.7 Ga) snowball Earth, higher meltwater δ(18)O estimates of -21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how (17)O/(16)O measurements provide information beyond traditional (18)O/(16)O measurements, even though all fractionation processes are purely mass dependent.

6.
PLoS One ; 7(9): e45537, 2012.
Article in English | MEDLINE | ID: mdl-23029080

ABSTRACT

We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ(18)O and δ(2)H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information.


Subject(s)
Fossils , Wood , Amber/chemistry , Canada , Cellulose/chemistry , Cellulose/ultrastructure , Environment , Isotopes , Temperature , Wood/anatomy & histology , Wood/chemistry , Wood/ultrastructure
7.
Proc Biol Sci ; 278(1722): 3219-24, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21429925

ABSTRACT

Despite centuries of research addressing amber and its various inclusions, relatively little is known about the specific events having stimulated the production of geologically relevant volumes of plant resin, ultimately yielding amber deposits. Although numerous hypotheses have invoked the role of insects, to date these have proven difficult to test. Here, we use the current mountain pine beetle outbreak in western Canada as an analogy for the effects of infestation on the stable isotopic composition of carbon in resins. We show that infestation results in a rapid (approx. 1 year) (13)C enrichment of fresh lodgepole pine resins, in a pattern directly comparable with that observed in resins collected from uninfested trees subjected to water stress. Furthermore, resin isotopic values are shown to track both the progression of infestation and instances of recovery. These findings can be extended to fossil resins, including Miocene amber from the Dominican Republic and Late Cretaceous New Jersey amber, revealing similar carbon-isotopic patterns between visually clean ambers and those associated with the attack of wood-boring insects. Plant exudate δ(13)C values constitute a sensitive monitor of ecological stress in both modern and ancient forest ecosystems, and provide considerable insight concerning the genesis of amber in the geological record.


Subject(s)
Amber/chemistry , Carbon Isotopes/analysis , Coleoptera/anatomy & histology , Fossils , Resins, Plant/chemistry , Alberta , Animals , Coleoptera/chemistry , Dominican Republic , New Jersey , Pinus/chemistry , Population Dynamics
8.
Proc Biol Sci ; 276(1672): 3403-12, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19570786

ABSTRACT

Baltic amber constitutes the largest known deposit of fossil plant resin and the richest repository of fossil insects of any age. Despite a remarkable legacy of archaeological, geochemical and palaeobiological investigation, the botanical origin of this exceptional resource remains controversial. Here, we use taxonomically explicit applications of solid-state Fourier-transform infrared (FTIR) microspectroscopy, coupled with multivariate clustering and palaeobotanical observations, to propose that conifers of the family Sciadopityaceae, closely allied to the sole extant representative, Sciadopitys verticillata, were involved in the genesis of Baltic amber. The fidelity of FTIR-based chemotaxonomic inferences is upheld by modern-fossil comparisons of resins from additional conifer families and genera (Cupressaceae: Metasequoia; Pinaceae: Pinus and Pseudolarix). Our conclusions challenge hypotheses advocating members of either of the families Araucariaceae or Pinaceae as the primary amber-producing trees and correlate favourably with the progressive demise of subtropical forest biomes from northern Europe as palaeotemperatures cooled following the Eocene climate optimum.


Subject(s)
Amber/chemistry , Tracheophyta/metabolism , Animals , Baltic States , Fossils , Insecta , Microscopy, Electron, Scanning , Phylogeny , Spectroscopy, Fourier Transform Infrared , Tracheophyta/classification
9.
Science ; 315(5819): 1704-7, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17379806

ABSTRACT

A sheeted-dike complex within the approximately 3.8-billion-year-old Isua supracrustal belt (ISB) in southwest Greenland provides the oldest evidence of oceanic crustal accretion by spreading. The geochemistry of the dikes and associated pillow lavas demonstrates an intraoceanic island arc and mid-ocean ridge-like setting, and their oxygen isotopes suggest a hydrothermal ocean-floor-type metamorphism. The pillows and dikes are associated with gabbroic and ultramafic rocks that together make up an ophiolitic association: the Paleoarchean Isua ophiolite complex. These sheeted dikes offer evidence for remnants of oceanic crust formed by sea-floor spreading of the earliest intact rocks on Earth.

10.
Science ; 304(5670): 578-81, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15105498

ABSTRACT

Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South Africa contain micrometer-scale mineralized tubes that provide evidence of submarine microbial activity during the early history of Earth. The tubes formed during microbial etching of glass along fractures, as seen in pillow lavas from recent oceanic crust. The margins of the tubes contain organic carbon, and many of the pillow rims exhibit isotopically light bulk-rock carbonate delta13C values, supporting their biogenic origin. Overlapping metamorphic and magmatic dates from the pillow lavas suggest that microbial life colonized these subaqueous volcanic rocks soon after their eruption almost 3.5 billion years ago.


Subject(s)
Bacteria , Geologic Sediments , Life , Paleontology , Bacteria/growth & development , Biomarkers , Carbon Isotopes/analysis , Carbonates/analysis , Glass , South Africa , Time , Volcanic Eruptions
SELECTION OF CITATIONS
SEARCH DETAIL
...