Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Healthcare (Basel) ; 11(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36981580

ABSTRACT

PURPOSE: PEMF stimulation results in a higher O2 muscle supply during exercise through increased O2 release and uptake. Given the importance of oxygen uptake in sport activity, especially in aerobic disciplines such as cycling, we sought to investigate the influence of PEMF on muscle activity when subjects cycled at an intensity between low and severe. METHODS: Twenty semi-professional cyclists performed a constant-load exercise with randomized active (ON) or inactive (OFF) PEMF stimulation. Each subject started the recording session with 1 min of cycling without load (warm-up), followed by an instantaneous increase in power, as the individualized workload (constant-load physical effort). PEMF loops were applied on the vastus medialis and biceps femoris of the right leg. We recorded the electromyographic activity from each muscle and measured blood lactate prior the exercise and during the constant-load physical effort. RESULTS: PEMF stimulation caused a significant increase in muscle activity in the warm-up condition when subjects cycled without load (p < 0.001). The blood lactate concentration was higher during PEMF stimulation (p < 0.001), a possible consequence of PEMF's influence on glycolytic metabolism. CONCLUSION: PEMF stimulation augmented the activity and the metabolism of muscular fibers during the execution of physical exercise. PEMF stimulation could be used to raise the amplitude of muscular responses to physical activity, especially during low-intensity exercise.

2.
J Altern Complement Med ; 26(10): 911-917, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32721212

ABSTRACT

Objectives: Practitioners of Biofield Tuning assess health status of their clients by detecting off-the-body biofield perturbations using tuning fork (TF) vibrations. This study tested inter-rater agreement (IRA) on location of these perturbations. Design: Three Biofield Tuning practitioners, in randomized order, identified locations of the 4-5 "strongest" perturbations along each of 4 sites for the same series of 10 research subjects. Setting/Location: An Integrative Health and Medicine Center in La Jolla, CA. Subjects: Adult volunteers with no serious current illness and no prior experience of a Biofield Tuning session. Interventions: Practitioners used an activated 174 Hz unweighted TF to "comb" the same four sites per subject, located on the left and right sides of the base of the spine and the heart. Outcome Measures: Practitioners identified and vocalized the distance from the body of perturbations along each site. Distances were recorded by a research assistant in the clinic room. No health information related to perturbation sites was discussed with the subjects. Results: Practitioners reported 6.3 ± 0.6 (mean ± standard deviation) perturbations per combed site per subject, with no significant difference among the raters. The overall level of IRA was low based initially on a first-pass, nonstatistical, analysis of results, with "agreement" defined within a tolerance of ±2 inches. In this approach agreement was 33%. More rigorous statistical analysis, including a statistical test using a Monte Carlo approach, strongly supported the conclusion of poor IRA. Conclusions: IRA was low despite attempts to balance the real-world practice of Biofield Tuning with the constraints of research. For example, while IRA necessitates multiple assessments of the same subject, no information exists as to whether an initial assessment may affect subsequent assessments. Our study exemplifies the challenges faced when attempting to fit interventions with incompletely understood procedures and mechanisms into conventional research designs.


Subject(s)
Electromagnetic Fields , Energy Metabolism/physiology , Holistic Health , Therapeutic Touch , Adult , Diagnosis, Differential , Female , Humans , Male , Mind-Body Therapies , Qi
5.
Neurosci Biobehav Rev ; 73: 165-181, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28017838

ABSTRACT

A broad range of mind-body therapies (MBTs) are used by the public today, and a growing body of clinical and basic sciences research has resulted in evidence-based integration of many MBTs into clinical practice. Basic sciences research has identified some of the physiological correlates of MBT practices, leading to a better understanding of the processes by which emotional, cognitive and psychosocial factors can influence health outcomes and well-being. In particular, results from functional genomics and neuroimaging describe some of the processes involved in the mind-body connection and how these can influence health outcomes. Functional genomic and neurophysiological correlates of MBTs are reviewed, detailing studies showing changes in sympathetic nervous system activation of gene transcription factors involved in immune function and inflammation, electroencephalographic and neuroimaging studies on MBT practices, and persistent changes in neural function and morphology associated with these practices. While the broad diversity of study designs and MBTs studied presents a patchwork of results requiring further validation through replication and longitudinal studies, clear themes emerge for MBTs as immunomodulatory, with effects on leukocyte transcription and function related to inflammatory and innate immune responses, and neuromodulatory, with effects on brain function and morphology relevant for attention, learning, and emotion regulation. By detailing the potential mechanisms of action by which MBTs may influence health outcomes, the data generated by these studies have contributed significantly towards a better understanding of the biological mechanisms underlying MBTs.


Subject(s)
Genomics , Attention , Emotions , Humans , Meditation , Neuroimaging
6.
Glob Adv Health Med ; 4(Suppl): 8-14, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26665037

ABSTRACT

Biofield science is an emerging field of study that aims to provide a scientific foundation for understanding the complex homeodynamic regulation of living systems. By furthering our scientific knowledge of the biofield, we arrive at a better understanding of the foundations of biology as well as the phenomena that have been described as "energy medicine." Energy medicine, the application of extremely low-level signals to the body, including energy healer interventions and bio-electromagnetic device-based therapies, is incomprehensible from the dominant biomedical paradigm of "life as chemistry." The biofield or biological field, a complex organizing energy field engaged in the generation, maintenance, and regulation of biological homeodynamics, is a useful concept that provides the rudiments of a scientific foundation for energy medicine and thereby advances the research and practice of it. An overview on the biofield is presented in this paper, with a focus on the history of the concept, related terminology, key scientific concepts, and the value of the biofield perspective for informing future research.

7.
Glob Adv Health Med ; 4(Suppl): 16-24, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26665038

ABSTRACT

The word biofield is a term that Western scientists have used to describe various aspects of energy and information fields that guide health processes. Similar concepts and descriptions of energy and information patterns exist in various cultures and have guided whole systems of medicine such as Ayurveda and Tibetan medicine. This article describes Vedic, Jain, and Tibetan philosophical and medical systems' concepts of consciousness and subtle energy and their relationships to health processes in order to foster deeper crosscultural dialogue on the nature of the biofield. Similarities and differences within the 3 traditions are noted, and suggestions for considering these concepts to extend current biofield research are discussed.

8.
Glob Adv Health Med ; 4(Suppl): 42-51, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26665041

ABSTRACT

Advances in biophysics, biology, functional genomics, neuroscience, psychology, psychoneuroimmunology, and other fields suggest the existence of a subtle system of "biofield" interactions that organize biological processes from the subatomic, atomic, molecular, cellular, and organismic to the interpersonal and cosmic levels. Biofield interactions may bring about regulation of biochemical, cellular, and neurological processes through means related to electromagnetism, quantum fields, and perhaps other means of modulating biological activity and information flow. The biofield paradigm, in contrast to a reductionist, chemistry-centered viewpoint, emphasizes the informational content of biological processes; biofield interactions are thought to operate in part via low-energy or "subtle" processes such as weak, nonthermal electromagnetic fields (EMFs) or processes potentially related to consciousness and nonlocality. Biofield interactions may also operate through or be reflected in more well-understood informational processes found in electroencephalographic (EEG) and electrocardiographic (ECG) data. Recent advances have led to the development of a wide variety of therapeutic and diagnostic biofield devices, defined as physical instruments best understood from the viewpoint of a biofield paradigm. Here, we provide a broad overview of biofield devices, with emphasis on those devices for which solid, peer-reviewed evidence exists. A subset of these devices, such as those based upon EEG- and ECG-based heart rate variability, function via mechanisms that are well understood and are widely employed in clinical settings. Other device modalities, such a gas discharge visualization and biophoton emission, appear to operate through incompletely understood mechanisms and have unclear clinical significance. Device modes of operation include EMF-light, EMF-heat, EMF-nonthermal, electrical current, vibration and sound, physical and mechanical, intentionality and nonlocality, gas and plasma, and other (mode of operation not well-understood). Methodological issues in device development and interfaces for future interdisciplinary research are discussed. Devices play prominent cultural and scientific roles in our society, and it is likely that device technologies will be one of the most influential access points for the furthering of biofield research and the dissemination of biofield concepts. This developing field of study presents new areas of research that have many important implications for both basic science and clinical medicine.

10.
PLoS One ; 8(4): e61752, 2013.
Article in English | MEDLINE | ID: mdl-23593496

ABSTRACT

The growing body of clinical and experimental data regarding electromagnetic field (EMF) bioeffects and their therapeutic applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF) signal, and a static magnetic field (SMF), applied independently, increased the rate of deoxygenation of human hemoglobin (Hb) in a cell-free assay. Deoxygenation of Hb was initiated using the reducing agent dithiothreitol (DTT) in an assay that allowed the time for deoxygenation to be controlled (from several min to several hours) by adjusting the relative concentrations of DTT and Hb. The time course of Hb deoxygenation was observed using visible light spectroscopy. Exposure for 10-30 min to either PRF or SMF increased the rate of deoxygenation occurring several min to several hours after the end of EMF exposure. The sensitivity and biochemical simplicity of the assay developed here suggest a new research tool that may help to further the understanding of basic biophysical EMF transduction mechanisms. If the results of this study were to be shown to occur at the cellular and tissue level, EMF-enhanced oxygen availability would be one of the mechanisms by which clinically relevant EMF-mediated enhancement of growth and repair processes could occur.


Subject(s)
Hemoglobins/metabolism , Magnetic Fields , Radio Waves , Static Electricity , Cell-Free System , Humans , Light , Spectrum Analysis , Urea/pharmacology
11.
Biochim Biophys Acta ; 1810(12): 1236-45, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22005645

ABSTRACT

BACKGROUND: The transduction mechanism for non-thermal electromagnetic field (EMF) bioeffects has not been fully elucidated. This study proposes that an EMF can act as a first messenger in the calmodulin-dependent signaling pathways that orchestrate the release of cytokines and growth factors in normal cellular responses to physical and/or chemical insults. METHODS: Given knowledge of Ca(2+) binding kinetics to calmodulin (CaM), an EMF signal having pulse duration or carrier period shorter than bound Ca(2+) lifetime may be configured to accelerate binding, and be detectable above thermal noise. New EMF signals were configured to modulate calmodulin-dependent signaling and assessed for efficacy in cellular studies. RESULTS: Configured EMF signals modulated CaM-dependent enzyme kinetics, produced several-fold increases in key second messengers to include nitric oxide and cyclic guanosine monophosphate in chondrocyte and endothelial cultures and cyclic adenosine monophosphate in neuronal cultures. Calmodulin antagonists and downstream blockers annihilated these effects, providing strong support for the proposed mechanism. CONCLUSIONS: Knowledge of the kinetics of Ca(2+) binding to CaM, or for any ion binding specific to any signaling cascade, allows the use of an electrochemical model by which the ability of any EMF signal to modulate CaM-dependent signaling can be assessed a priori or a posteriori. Results are consistent with the proposed mechanism, and strongly support the Ca/CaM/NO pathway as a primary EMF transduction pathway. GENERAL SIGNIFICANCE: The predictions of the proposed model open a host of significant possibilities for configuration of non-thermal EMF signals for clinical and wellness applications that can reach far beyond fracture repair and wound healing.


Subject(s)
Calmodulin/metabolism , Electromagnetic Fields , Signal Transduction , Cell-Free System , Cells, Cultured , Humans
12.
Bioelectromagnetics ; 30(6): 476-88, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19437458

ABSTRACT

In Part I it was shown that the thermal component of the motion of a charged particle in an oscillator potential, that is, within a molecular binding site, rotates at the Larmor frequency in an applied magnetic field. It was also shown that the Larmor angular frequency is independent of the thermal noise strength and thus offers a mechanism for the biological detection of weak (microT-range) magnetic fields. Part II addresses the question of how the Larmor trajectory could affect biological reactivity. The projection of the motion onto a Cartesian axis measures the nonuniformity of the Larmor trajectory in AC and combined AC/DC magnetic fields, suggesting a means of assessing resonances. A physically meaningful measure of reactivity based upon the classical oscillator trajectory is suggested, and the problem of initial conditions is addressed through averaging over AC phases. AC resonance frequencies occur at the Larmor frequency and at other frequencies, and are dependent upon the ratio of AC/DC amplitudes and target kinetics via binding lifetime. The model is compared with experimental data reported for a test of the ion parametric resonance (IPR) model on data from Ca2+ flux in membrane vesicles, neurite outgrowth from PC-12 cells and a cell-free calmodulin-dependent myosin phosphorylation system, and suggests Mg2+ is the target for these systems. The results do not require multiple-ion targets, selection of isotopes, or additional curve fitting. The sole fitting parameter is the binding lifetime of the target system and the results shown are consistent with the literature on binding kinetics.


Subject(s)
Electromagnetic Fields , Models, Biological , Animals , Calcium/metabolism , Calmodulin/metabolism , Cytoplasmic Vesicles/metabolism , Kinetics , Magnesium/metabolism , Myosins/metabolism , Neurites/physiology , PC12 Cells , Periodicity , Phosphorylation , Protein Binding , Rats
13.
Bioelectromagnetics ; 30(6): 462-75, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19437460

ABSTRACT

We have previously employed the Lorentz-Langevin model to describe the effects of weak exogenous magnetic fields via the classical Lorentz force on a charged ion bound in a harmonic oscillator potential, in the presence of thermal noise forces. Previous analyses predicted that microT-range fields give rise to a rotation of the oscillator orientation at the Larmor frequency and bioeffects were based upon the assumption that the classical trajectory of the bound charge itself could modulate a biochemical process. Here, it is shown that the thermal component of the motion follows the Larmor trajectory. The results show that the Larmor frequency is independent of the thermal noise strength, and the motion retains the form of a coherent oscillator throughout the binding lifetime, rather than devolving into a random walk. Thermal equilibration results in a continual increase in the vibrational amplitude of the rotating oscillator towards the steady-state amplitude, but does not affect the Larmor orbit. Thus, thermal noise contributes to, rather than inhibits, the effect of the magnetic field upon reactivity. Expressions are derived for the ensemble average of position and the velocity of the thermal component of the oscillator motion. The projection of position and velocity onto a Cartesian axis measures the nonuniformity of the Larmor trajectory and is illustrated for AC and combined AC/DC magnetic fields, suggesting a means of interpreting resonance phenomena. It is noted that the specific location and height of resonances are dependent upon binding lifetime and initial AC phase.


Subject(s)
Electromagnetic Fields , Ions/chemistry , Models, Biological , Temperature , Algorithms , Periodicity , Protein Binding , Time Factors , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...