Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0303792, 2024.
Article in English | MEDLINE | ID: mdl-38848385

ABSTRACT

The mission of NIH-sponsored institutional training programs such as the T32 is to provide strong research and career training for early career scientists. One of the main avenues to pursuing health-related research is becoming research faculty at an academic institution. It is therefore important to know whether these programs are succeeding in this mission, or, if barriers exist that prevent trainees from pursuing these careers. Our institution currently trains ~ 2400 post-doctoral scholars per year, approximately 5% of whom are enrolled in one of our 33 T32 programs. In this study, we 1) compare the proximal professional career trajectories of T32 trainees with non-T32 trainees at our institution, 2) compare proximal career trajectories of trainees in a subset of cardiovascular T32 programs based on their previous training backgrounds, and 3) survey past and current T32 trainees in a subset of cardiovascular T32 programs about the barriers and enablers they experienced to pursuing research-oriented careers. We find that former T32 trainees are significantly more likely to attain appointments as primarily research faculty members, compared to other trainees. Trainees report a perceived lack of stability, the paucity of open positions, and the 'publish or perish' mentality of academia as the top barriers to pursuing careers in academia. However, they were still more likely to choose research over clinical careers after participating in a dedicated T32 program. Our results support the conclusion that structured training programs strengthen the pipeline of young scientists pursuing careers in academic research, including those from underrepresented backgrounds. However, T32 postdoctoral researchers are held back from pursuing academic careers by a perceived lack of stability and high competition for faculty positions.


Subject(s)
Faculty , Humans , United States , Career Choice , Male , Female , Biomedical Research/education , National Institutes of Health (U.S.) , Research Personnel/education , Education, Graduate/statistics & numerical data
2.
J Am Heart Assoc ; 11(8): e022380, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35388707

ABSTRACT

Background To support diversity in biomedical science, the American Heart Association launched the Supporting Undergraduate Research Experiences for undergraduate students from underrepresented backgrounds to provide mentorship and high-level exposure at 5 leading medical institutions. Here we describe the initial formation of the partnership and the alteration made in response to the program to accommodate COVID-19 safety precautions. Methods and Results We outline how programming shifted from local, in-person programming in the summer of 2019 to a collaborative, mainly virtual curriculum in 2020 using students' self-reported before and after surveys from both 2019 (n=33) and 2020 (n=42). Students from both in-person (2019) and virtual programs (2020) self-reported significant gains in scientific proficiency. A qualitative-directed content analysis of student open-response questions was performed. Students reported extensive benefits from the 2020 virtual training, including Personal Gains, Research Skills, Thinking and Working Like a Scientist, and Attitudes and Behaviors. Notedly, we observed increases in the Attitudes and Behaviors category. We outline the pros and cons of in-person and virtual programming and make recommendations moving forward in a postpandemic world with hybrid work and learning systems. Conclusions Our effort informs the development of future undergraduate research training programs, significantly maximizing a hybrid training modality. The American Heart Association Supporting Undergraduate Research Experiences serves as a model for building multi-institutional partnerships and providing research experiences that overcome institutional barriers and support students' interests, commitment, and ability to persist in science, technology, engineering, and math fields.


Subject(s)
American Heart Association , COVID-19 , Humans , Mentors , Students , United States
3.
Neural Plast ; 2016: 6021428, 2016.
Article in English | MEDLINE | ID: mdl-26881119

ABSTRACT

Perineuronal nets (PNNs) are extracellular molecules that form around neurons near the end of critical periods during development. They surround neuronal cell bodies and proximal dendrites. PNNs inhibit the formation of new connections and may concentrate around rapidly firing inhibitory interneurons. Previous work characterized the important role of perineuronal nets in plasticity in the visual system, amygdala, and spinal cord of rats. In this study, we use immunohistochemistry to survey the distribution of perineuronal nets in representative areas of the primate brain. We also document changes in PNN prevalence in these areas in animals of different ages. We found that PNNs are most prevalent in the cerebellar nuclei, surrounding >90% of the neurons there. They are much less prevalent in cerebral cortex, surrounding less than 10% of neurons in every area that we examined. The incidence of perineuronal nets around parvalbumin-positive neurons (putative fast-spiking interneurons) varies considerably between different areas in the brain. Our survey indicates that the presence of PNNs may not have a simple relationship with neural plasticity and may serve multiple functions in the central nervous system.


Subject(s)
Acetylgalactosamine/analysis , Brain/metabolism , Extracellular Matrix/metabolism , Neuronal Plasticity , Neurons/metabolism , Animals , Brain/cytology , Extracellular Matrix Proteins/metabolism , Female , Macaca mulatta , Male , Neurons/cytology , Rats , Spinal Cord/cytology , Spinal Cord/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...